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Abstract
Thefinite state projection (FSP)method has enabled us to solve the chemicalmaster equation of some
biologicalmodels that were considered out of reach not long ago. Since the original FSPmethod,
much effort has gone into transforming it into an adaptive time-stepping algorithm aswell as studying
its accuracy. Some of the improvements include themultiple time interval FSP, the slidingwindows,
andmost notably theKrylov-FSP approach.Our goal in this tutorial is to give the reader an overview
of the currentmethods that build on the FSP.

1. Introduction

A familiar approach to modeling a complex reaction
network is to find the master equation that describes
the joint probability density function of the population
of the reactants over time. In their extensive review [1],
Goutsias and Jenkinson listedmany fields of science in
which such an equation is of considerable importance,
such as ecological networks, pharmacokinetic net-
works and social networks.

In systems biology, the equation is called the che-
mical master equation (CME) [2], and its solution is
the probability distribution of finding the system in all
possible states (i.e., all possible integer-valued popula-
tions of the reacting chemical species). It is easy to see
why solving the CME is a formidable task: if the copy
numbers of species in the system are not bounded,
then there are potentially infinitely many states that
the system can occupy. Even if we apply a bound on
the species numbers, the size of the CME increases
exponentially with the numbers of species and there-
fore solving for the probability distribution of all of
them is numerically very expensive.

Despite this so-called ‘curse of dimensionality’,
solving the CME has been of great interest to the sys-
tems biology community, because unlike determinis-
tic models, the CME captures the randomness of the
biological processes. It has been shown in different
biological contexts that single molecular events may

significantly impact the process, which underlines the
importance of stochasticity in thesemodels.

The main approach to solving the CME has often
been using Monte Carlo algorithms, of which Gilles-
pie’s stochastic stimulation algorithm (SSA) [3] has
been extensively employed. However, the SSA can be
very slow, considering the numerous runs needed to
average the probability distribution. Several modifica-
tions to improve its efficiency include the tau-leaping
method [4, 5] or slow-scale SSA [6].

The finite state projection (FSP) method [7] is a
different approach to provide an approximation to the
actual probability distribution at the end time as well
as the transient probabilities with a guaranteed
accuracy.

Soon after the FSP, an adaptive time-stepping ver-
sion was introduced [8, 9] and followed by other var-
iants. These algorithms have proved to give accurate
probability distributions, and their speed has been
helpful in gene regulation problems where a set of
parameters have to be found, which can only be
achieved by computing the distributions for many
parameter sets and choosing the distribution closest to
experimental data [10]. The FSP approach is also valid
for cases where reaction rates vary over time. How-
ever, the solutions need to be found by applying ODE
techniques, and certain FSP improvements may no
longer be applicable. We therefore only consider the
cases where reaction rates are constant in this paper.
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Despite the huge numerical improvements of the
FSP and its variants, to the authors’ knowledge, there
has been no survey of the different approaches. This
paper ismeant to fulfill that purpose.

The paper is organized as follows: section 2
describes the notation used throughout the paper, for-
malizes the CME, and comments on popular Monte
Carlo methods. Section 3 outlines the original FSP
method. Section 4 describes a time-stepping frame-
work, where each step consists of three stages, and we
show how all variants of the FSP aimed at improving
one or more of these stages. From there, the variants
are presented in sections 5–7, following how they fit in
the time-stepping framework. Note that each method
is accompanied by a simplified pseudocode for ease of
readability. Another approach for solving the CME via
tensor decomposition is discussed in section 8. An
illustrative example is given in section 9 to demon-
strate how to generate the CME matrix for a specific
biological case. Section 10 lists some available software
for solving the CME by using the FSP. The strengths
and weaknesses of solving the CME are discussed in
section 11. We finish with some concluding remarks
in section 12.

2. Chemicalmaster equation

Consider a chemical reaction system consisting of N
molecular species ¼S S, , N1 that interact through M
reactions of the form

+¼+ +¼+⟶R a S a S
c

b S b S:k k Nk N
k

k Nk N1 1 1 1

for = ¼k M1, , . The ck are reaction rate constants,
which are scale factors for how likely such a collision of
the reactants results in a reaction. At any time, the
system can be described as the numbers of copies of
each species. We then can define the state vector of the
system as the vector of these numbers:

= ¼( )x x x, , ,N
T

1

where xl is a count for species Sl.We denote ( )x t as the
state of the system at time t.

The propensity function a ( ( ))x tk of reaction Rk at
the current state ( )x t is defined so that the probability
of such a reaction occurring during the infinitesimal
time interval +[ )t t dt, is equal to a ( ( ))x t dtk .

When reaction Rk happens, the state vector is
updated as

n+ ¬ +( ) ( ) ( )x xt dt t , 1k

where the stoichiometric vector nk, representing the
change in species numbers, is defined as

n = - ¼ -( )b a b a, , .k k k Nk Nk
T

1 1

We are now interested in the probability that the
system is at state x at time t, which we denote

= =( ) { ( ) }x x xP t t, Prob . Assuming that we know
the number of each species at t= 0 (fromwhichwe can
deduce ( )xP , 0 ), the CME [2] dictates that

å
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The expression is clear if we note that na -( )x dtk k is
the probability for state n-x k to transition to state x
through reaction Rk during +[ )t t dt, , and

aå =( ( ))x dtk
M

k1 is the probability for the system to
escape from state x through any reaction during that
same time period.

Let X be the set of all possible states, if we order
these states as ¼x x, , n1 , where = ¼( )x x x, ,i i Ni

T
1 and

n is the total number of states, then (2) defines a set of
ODEs governing the change in

= ¼( ) ( ( ) ( ))p x xt P t P t, , , ,n
T

1 :

=˙ ( ) · ( ) ( )p A pt t , 3

where here we set = ¼( ) ( )p 0 1, 0, , 0 T by assuming
that the system is at state x1 at t = 0. The transition
ratematrix = Î ´[ ] A aij

n n is defined as

å
n

a

a
=

- =

= +
=
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⎨
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1

From (3) we can find the probability vector at the end
point tf:

=( ) ( ) ( )p A pt texp 0 ,f f

where the exponentialmatrix is defined as

å=
=

¥

( )
( )

!
A

A
t

t

m
exp .f

m

f
m

0

An explicit formula for ( )p t can be given only in
extremely simple cases, such as monomolecular reac-
tion systems [11], therefore it is necessary to numeri-
cally solve at a prescribed end point tf.

The enormous size of the CME usually makes it
too challenging to solve directly. The stochastic simu-
lation algorithm (SSA) takes a piecemeal approach by
computing single realizations of the state vector rather
than an entire probability distribution. For each reali-
zation, the algorithmupdates the state as in (1), by ran-
domly choosing the time between events, dt, and the
next reaction index, k. The τ-leap variant that seeks to
improve the efficiency of the SSA consists in allowing a
larger time between events, t ¬ dt , so that more that
one reaction can be accumulated in the state update.

As noted before, the cost of these methods is com-
pounded by the multiple runs that have to be done to
average the results in a Monte Carlo manner. More
details about these algorithms can be found in [3–5],
and further improvements in [6, 12, 13].

3. The originalfinite state projection

Unlike SSA, the FSP method seeks to directly approx-
imate the probability density function that is the

2
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solution of (3). We define XJ to be a finite subset of
states in X , where J is the index set of those states.
Consider all the other states not in X as only one state,
which we call the sink state G. Let AJ be a submatrix of
A containing only the elements on the rows and
columns indexed by J, and ( )p X t,J contains only the
probabilities of states indexed in J at time t. The
FSPmethod approximates ( )p X t, by

=( ) ( )p p Xt t,J J
FSP FSP , which follows the master

equation

=
-

˙ ( )
˙ ( )

( )
( )
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The theoretical solution to this set of ODEs can be
proven to be

=

= - +
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Note that since AJ is extracted from A, ( )p tJ
FSP has a

different statistical meaning from ( )p X t,J : the ele-
ments in ( )p tJ

FSP are the probabilities that the system is
at the corresponding states at t and has never left XJ

during [ )t0, . On the other hand, g(t) is the probability
that the system visited the sink state G at least once
during [ )t0, (also note that if XJ contains the initial
state then =( )g 0 0). In [7] the authors showed that
these facts imply

( ) ( ) ( ) ( )  p X p pt t t 0, 6J J J
FSPFSP

2 1

if ÌJ J1 2, and
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where ¢J is the index set of the states not in J. The
significance of these two properties cannot be
overstated: (6) guarantees that the FSP approximation
only improves monotonically element-wise if we keep
expanding the state space, and (7) gives us the exact
evaluation of the 1-norm error.

The original FSP algorithm follows directly from
the solution (5) and these two observations.

Original FSP algorithm. (B Munsky, M Khammash,
[7], 2006)

Find the FSP approximationwith 1-norm error less than  at tf:

1: Initialize i= 0, J0 and A J0.

2: Approximate ( ) ( )A p Xtexp , 0f J Ji i .

If -( ) ( ) A p Xt1 exp , 0 1T
f J Ji i , then stop.

We have the approximation

»( ) ( ) ( )p X A p Xt t, exp , 0 ,J f f J Ji i i

with

-( ) ( ) ( ) p X A p Xt t, exp , 0J f f J J 1i i i 
3: Increment i and addmore states into Ji, then return to step 2.

4. Time-stepping FSP variations

There has been great interest in modifying the FSP
algorithm into a time-stepping scheme. Many
approaches that have been developed for this purpose
follow the same framework demonstrated in the
following variable time-stepping FSP algorithm.

The algorithmdivides [ ]t0, f into small intervals

= < < ¼< =+t t t t0 .K f0 1 1

At every interval +[ ]t t,k k 1 , the quest is then to find the
index set +Jk 1 of the most likely states. The probability
vector of +X Jk 1

at +tk 1 is then calculated by

t=+
+ +( ) ( ) ( ) ( )p A pt texp 8

J k k J J k
FSP

1
FSP

k k k1 1

and the algorithmmoves on to the next time interval.
Though not always the case, the problem of

approximating (8) can be even further reduced before
solving, especially when special properties of the reac-
tions or the species are realized. In these cases, the
reduced system will be preconditioned in step 2 of the
algorithm. Apart from that, steps 1 and 3 are taken
from the original FSP algorithm. Note that our nota-
tion for the FSP approximation is

= =( ) ( ) ( )p p p Xt t t,J k J k J k
FSP FSP

k k k
and not to be con-

fusedwith the true solution ( )p X t,J kk
.

Variable time-stepping FSP algorithm. (K Burrage,
MHegland, S MacNamara, R Sidje, [8], 2006.
BMunsky,M Khammash, [9], 2007.)

0: Start from k = 0, =t tk 0.

1: Find the time step tk , and the state space +X Jk 1 containing states

most likely over +[ ]t t,k k 1 where t= ++t tk k k1 .

2: Precondition the reduced systembefore solving.

3: Approximate

t»++ +( ) ( ) ( )p A pt texpJ k k J J k1k k k1 1

4: If <+t tk f1 , set = +k k 1 and go to step 1.

Note that the variable time-stepping FSP algo-
rithm serves more as a framework, because each step
from 1 to 3 can be modified for the specific biological
problem. The next three sections will drill further
into these steps: section 5 considers different strate-
gies to update the state space, section 6 discusses
somemethods to precondition the FSP, and section 7
introduces some techniques to compute the action of
matrix exponential on a vector while taking advan-
tage of the fact that the entire matrix exponential is
not needed.

5.Update the state space

It is clear that a crucial part of the variable time-
stepping FSP algorithm is to find a strategy for
updating the state space: it needs to contain enough
states that contribute themost to the probability mass,

3

Phys. Biol. 13 (2016) 035003 KNDinh andRB Sidje



but a too large state space results in a bigger AJ and a
more time-consuming evaluation of its matrix
exponential.

5.1. Update by r-step reachability
The original paper by Munsky and Khammash [7] has
a suggestion for how to expand the state space through
the concept of reachability. They made an observation
that, the system ends up in a state at +tk 1 by jumping
from a state in tk through only finitely many states in
X . Therefore, much of the probability mass at +tk 1will
be contained in the set of the states either in X Jk

or can
be reached from a state in X Jk

within one reaction, we
call the index set of these states ( ) Jk1 :

n= + Î Î
=
⋃ { }( )X X x X x X; .J J
i

M

i J
1

k k k1

Inductively, the index set of states either in X Jk
or

within r reactions from X Jk
can be defined

as = -( ) ( ( ))  J Jr k r k1 1 .

Update by 5.1. r-step reachability (B Munsky,
MKhammash, [7], 2006)

0: =+J Jk k1

1: Repeat r times:

=+ +( )J J .k k1 1 1

5.2. Update bymultiple absorbing states
One disadvantage of the r-step reachability algorithm
is that of the states that can be reached from the
current state space, the probabilities of many are so
low that including them in the state space only results
in a big matrix without a noticeable improvement in
error. The multiple absorbing states method, dis-
cussed in [9], attempts to solve the problem. Instead of
grouping all the states not in X Jk

into only one sink
state, the method divides them into L sink states

¼G G, , L1 such that Gi contains all states that escape
X Jk

through reaction Ri. Letting gi(t) be the probability
that the system escapes to Gi from X Jk

, and
= ¼( ) ( ( ) ( ))g t g t g t, , L

T
1 , the system then follows the

ODEs

=
˙ ( )
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t
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0
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na
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+ Ï
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0, otherwise
,

i j j i Jk

The solution of (9) at +tk 1 is

ò
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x x
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k J J k k

1

1
0
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k k

Aswe can see, the set of ODEs (9) does not give us a
better approximation for ( )p tJk

, but it gives us infor-
mation about what reactions leak the most probability
mass from X Jk

. To expand the state space we then only
consider the directions of the reactions contributing
much to the probability mass drop. In [14], the
absorbing states are defined by an arbitrary set of non-
linear inequalities, which can avoid the stiffness of the
matrix A Jk

and therefore can bemuchmore efficient.

Update by 5.2. r-step reachability and multiple
absorbing states (BMunsky, M Khammash, [9], 2007,
[14], 2011)

0: Start from k= 0, time-step tk ,

tolerance on error k,

1: Define a set of functions ¼{ }f f, , L1 and a set

of bounds ¼{ }b b, , L1 .

2: +X Jk 1 is defined as all states x so that

= ¼( ) xf b i L, 1, , ,i i

andGi contains the all states exiting +X Jk 1

through inequality fi.

Note: The next two stages in the Variable time-stepping

FSP algorithm solve for +( )p tJ k 1k
and

+( )g tk 1 by applying (10). In case >+( ) g t1T
k k1 ,

we can redo the process and choose a larger

biwhen +( )g ti k 1 is big.

5.3. Update by slidingwindows
The sliding windows algorithm updates the state space
from X Jk

at tk to +X Jk 1
at +tk 1by constructing awindow

Ì+W Xk 1 that aims to contain the most probability
mass during +[ ]t t,k k 1 . We then can solve for the
probability distribution of +Wk 1 at +tk 1, but the whole
vector is not stored. Only the states in +Wk 1 having a
considerable probability at +tk 1 are kept in +X Jk 1

.
Therefore the algorithm can avoid having a big state
space, and as a result, computing the probability vector
for the next time step can bemore efficient.

+Wk 1 is constructed by realizing which states are
frequently visited by the system during +[ ]t t,k k 1 . The
task is done by applying a stochastic approach to esti-
mate the largest and smallest populations attained by
each species over +[ ]t t,k k 1 , and then use these
extremes to form the boundaries of thewindow +Wk 1.

Since the exact transient dynamics during +[ ]t t,k k 1

is not needed, the extremes are found by a crude ran-
dom approximation during this time period, instead
of using the SSA which could be slow. The time inter-
val +[ ]t t,k k 1 is divided into small equal intervals

+ D + D ¼ +[ ]t t t t, , 2 , , .k k k k 1

During each interval + D[ ]( ) ( )t t,l l , the propensity of
each reaction Ri is assumed to remain constant to
a ( )( )xi

l where ( )x l is the state at ( )t l . This means that
the number of reactions Ri to occur during

+ D[ ]( ) ( )t t,l l is Poisson distributed, with parameter
a D( )( )xi

l . Taking into account that the standard
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deviation of the Poisson distribution is a D( )( )xi
l ,

statistically it can be assumed that the actual number
of reactions Ri happening during + D[ ]( ) ( )t t,l l is at
most

k a aD = D + D+( ) ( ) ( )( ) ( ) ( )x x x,i
l

i
l

i
l

and at least

k a aD = D - D-( ) ( ( ) ( ) )( ) ( ) ( )x x x, max 0, .i
l

i
l

i
l

Because the interest is in building awindow containing
considerable probability mass, either of these two
extremes is assumed to have happened, for each
reaction of type Ri. Continuing until reaching +tk 1, we
have one trajectory where the worst case scenario
happens at each step. Themaximum andminimum of
xd, the number of the dth species of state x, along all
trajectories are then the boundaries for the win-
dow +Wk 1.

Update by 5.3. Sliding windows (VWolf, R Goel, et al
[15], 2010)

0: Start with X Jk at tk, time-step tk , parameter δ.

1: Find the extremes of each dimension d for the

window, +bd and -bd . These are estimates of the

largest and smallest populations attained by the dth species

over +[ ]t t,k k 1 .

2: The state windowwill

be È= Î+
- +{ } W X x X b x b:k J d d d1 k .

3: Solve for

t=+ + ++( ) ( ) ( )p W A p Wt t, exp , .Wk k k k k1 1 1k 1

4: d= Î >+ ++ { ( ) }X x W xP t: ,J k k1 1k 1 , and

++( )p X t,J k 1k 1 is truncated accordingly from

+ +( )p W t,k k1 1 .

5.4. Update by the optimal state space
The ‘optimal’ FSP method [16] underlines the pro-
blem that methods such as r-step reachability has and
that the sliding windows tries to solve: expanding the
state space without removing any or most improbable
states can result in an unnecessarily big problem to
solve. The proposal of the Optimal FSP method is
intuitive: after expanding the state space from X Jk

at
time tk to +X Jk 1

at time +tk 1 using conventional
methods, we solve for + +( )p tk k1 1 and then remove the
states in +X Jk 1

whose probabilities at +tk 1 are too small.
The question that arises is then how many states

dowe remove at each step. The algorithmproposes the
following approach, consisting of two steps:

• Find the state space +
Jk 1

2 by any FSP method (the
paper applied r-step reachability) so that the 1-norm
error at +tk 1 is less than a prescribed



2
.

• Find and delete the states in +
Jk 1

2 with the smallest

probabilities at +tk 1 that add up to


2
, resulting in the

state space +Jk 1.

+Jk 1 is then guaranteed to have the 1-norm error
at +tk 1of atmost  .

We need to point out that themethod is only ‘opti-
mal’ in the sense that the resulting state space has the
fewest elements while still ensuring that the the
1-norm error is less than a prescribed  .

However, the fact that the first step in the method
applies r-step reachability with error  2 instead of 
as in the original r-step reachability ensures that find-
ing the state space will be much slower than other
methods, although approximating + +( )p tk k1 1 is faster.

Update by 5.4. Optimal FSP method (V Sunkara, M
Hegland, [16], 2012)

0: Start from X Jk at tk, time-step tk and tolerence k.

1: Apply r-step reachability to find +Jk 1 so that
- <+ +( ) 

p t11
2

.T
k k

k
1 1

2: Sort + +( )p tk k1 1 in descending order, then remove

the states with the smallest probabilities

at +tk 1 into ¢J so that

¢ +( )p X t1 ,T
J k 1

is as close to 
2
k as possible.

3: Compress the state space at +tk 1:

¬ - ¢+ +J J J .k k1 1

+Jk 1 is the smallest state index set so that

- <+ +( ) p t11 .T
k k k1 1

5.5. Update byGORDE
The Gated One Reaction Domain Expansion
(GORDE) is anothermethod targeted atmaking r-step
reachability more efficient. However, instead of opti-
mizing the state space after solving for the probability
vector at +tk 1 like the Optimal FSP method, GORDE
estimates the probabilities of the likely reachable states
using a gating function.

The main disadvantage of r-step reachability is
that it does not evaluate the likelihood of the new states
when expanding the state space. The result is that the
algorithm expands in the directions of the unlikely
states as much as in the directions of the more prob-
able ones. GORDE seeks to solve this by assigning
every state x that is m steps from X Jk

with the gating
value ( )xum , the probability that the system travels
from X Jk

to x in exactly m reactions during +[ ]t t,k k 1

and has stayed there since. ( )xum is therefore an upper
bound of and a crude approximation for +( )xP t, k 1 . It
acts like a weight function integrated in r-step reach-
ability: the algorithm only expands in the directions of
states x with larger ( )xum .

Themost practical fact about the gating function is
that it can be calculated inductively inm:

å n
n

n

a
a

=
-
-

´ - -na t
=

- -
- ( )

( ) ( )
( )

( ) ( )( ) 11

x
x

x

x

u

e u1 .x

m
i

M
i i

i

m i

1 sum

1i ksum

The algorithm for GORDE is then as follows: the
gating values for states in X Jk

are initialized as
=( ) ( )X pu tJ k k0 k

. X Jk
is then expanded in 1-step into

~1, and the gating values for 
~

1 are then evaluated by
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(11). If the gating values for the entire ~1 sum up to be
less than a prescribed tolerence k, then the algorithm
stops and È =

~
+X XJ J 1k k1

. If not, choose the

smallest set  Ì
~

1 1 containing the highest gating
values and expand only from that set in 1-step into~2,
with the new tolerence equals k substracted by the
gating values of states in  ~

-1 1 and redo the whole
process. In the end, if the gating values of all states in
~m add up to less than the tolerence, then the state
space at +tk 1 is

È È È  = ¼
~

-+X .J m m0 1k 1

Update by 5.5.GORDE (VSunkara, [17], 2013)

• Start from X Jk at tk, time-step tk and tolerence k.

• Initialize  = X J0 k , =( ) ( )x xu P t, k0 and t = k0 .

• For = ¼m 1, 2,

1. Expand  -m 1 by 1-step reachability:  ~
¬ -( ) .m m1 1

2. Compute the gating function for Î
~

x m:

å
n
n

a
a

=
-
-=

( ) ( )
( )

x
x

x
um

i

M
i i

i1 sum
n´ - -na t- -

-( ) ( )( ) xe u1 x
m i1

i ksum

with a a= å =i
M

isum 1 .
3. Compress 

~
m into the smallest m so that

å t<
 Î
~

-
-( )xu .

x
m m 1

m m
4. Stop the loop if  =∣ ∣ 0m . Otherwise

update åt t= -
 

-
Î
~

-

( )xu .
x

m m m1

m m
•The next state space at +tk 1 is

È È È  = ¼
~

-+X .J m m0 1k 1

5.6. Update by SSA
The SSA-drivenmethod [18] is a combination of the r-
step reachability and an approach similar to sliding
windows. However, instead of forming the boundaries
of a hyper-rectangle as in the sliding windowsmethod,
it uses SSA trajectories to build a collection of sets that
can possibly be disjoint.

At every step, the method eliminates the states in
X Jk

that have become improbable. It does so by apply-
ing the condition

m= Î+ { ( ) }xJ i J : ,k k i1
3

where m ( )xi is a dropping criterion, e.g.,
m = = - ¼( ) ( )ℓx p tmaxi j k k i j, , calculates the highest
probability xi has in the lastℓ steps.

The method then runs the SSA from the states in

+Jk 1
3
and saves all the states visited along the trajec-

tories as +Jk 2
3
. To smooth these random trajectories

themethod further applies r-step reachability on +Jk 2
3
.

The result of this will be the state space +Jk 1 at +tk 1.
A feature central to the efficiency of the method is

its ‘lazy evaluation’. The SSA runs are only performed
when deemed necessary by an error control mech-
anism, and even then, the SSA trajectories are only
extended as far as needed for the suitability of +Jk 1.

Update by 5.6. SSA-driven method (R Sidje, H Vo,
[18], 2015)

0: Start from X Jk at tk, time-step tk , parameters

ℓ and r, and the tolerence  .

1: Eliminate the states in X Jk with lowprobabilities:

m= Î+ { ( ) }xJ i J :k k i1
3

, where

m = = - ¼( ) ( )ℓx p tmaxi j k k i j, , .

2: t=+ Î +
⋃ ( )xJ tSSA , ,k i J i k k

k
2
3 1

3

.

3: +Jk 1 is the r-step expansion of +Jk 2
3
.

6. Precondition the FSP

The original FSP algorithm proceeds with the matrix
exponential right after finding the state space. This can
sometimes be slow, either because there is a difference
in themagnitudes of the reaction rate constants, which
causes thematrix to be stiff, or the state space is simply
too large. Time scale separation [19] improves the
numerical performance in the former case, by apply-
ing the perturbation theory, and aggregation [20]
solves the latter case by simply grouping states
together.

6.1. Precondition by time scale separation
Time scale separation is based on the authors’ observa-
tion in [19] that in some biological cases, some
reactions can have higher propensities and therefore
happen more frequently than other reactions. The
result is that there are clusters of states, the states
within the same cluster can transition regularly to each
other, and transitions between clusters are rare, which
implies that the generator A can be divided into

= + A H V ,

where H is a block diagonal matrix, and  1 . Each
block of H represents a propermaster equation for the
states in one cluster, and V contains the transition
rates between these clusters.

Since the blocks of H represent ODEs for a proper
master equation, and their dimensions are much less
than the dimension of A, it is computationally cheap
to compute their eigensystems, which is equivalent to
having the eigensystem of H :

l l

L

L

=

= ¼

- ˜

˜ ( ˜ ˜ )

S S HS
S H

diag

:
has same block diagonal structure as

, , n

1

1

We rearrange l l¼˜ ˜, , n1 into a decreasing sequence

l l¼( ) ( ) Re Re .n1

Notice that if H has m blocks, then
l l= ¼ = = 0m1 , Let Î ´SR N m and Î ´SL m N

contain the right and left eigenvectors of H for these
zero eigenvalues (which construct the right and left
null-spaces of H ), respectively. Note that the left
eigenvectors are all 1.
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Using perturbation theory, the authors observed
that the projection

~=
= ~( ) ( ) ( )

V S VS

S V St texp 12

L R

R L

gives the asymptotic approximation to the problem:

> - =( ) ( ) ( ) ( ) ( ) ( )  p pt T t t: 0 13 

The time it takes for the approximation to be applic-
able is estimated to be

l~ +( ) ( ( )) T ln Re .m 1

If the distinction between the clusters of states is clear,
then it is guaranteed that l -( ) Re i m  , and ( )T
is small. However, there can be cases where the liʼs
decrease only mildly at first, and ( )T can be larger
than the end point tf. When such a problem is
encountered, we can simply add in the right and left
eigenvector of H corresponding to l +m 1 in SL and SR

(the left eigenvector no longer being 1). The projection
(12) then satisfies (13)with

l~ +( ) ( ( )) T ln Re .m 2

If the new time restriction is still too big, we can keep
adding in eigenvectors of H until the condition

t<( )T is satisfied.

Precondition by 6.1. Time scale separation (S Peles, B
Munsky,MKhammash, [19], 2006)

0: Start with +A Jk 1 and time-step tk . Separate

+A Jk 1 into H and V , andm is the number of blocks in H .

1: Find SR, SL corresponding to l l¼, , m1 .

2: l= +( ) ( ( )) T ln Re m 1 . Continue if t<( )T k ,

otherwise increasem and return to step 1.

3: Compute
~ =V S VSL R.

4: Approximate t ~( ) Vexp k .

5: Compute t t= ~( ) ( ) S V Sexpk
R

k
L, thenwe have

t»+ +( ) ( ) ( )p pt t .k k k k k1 1

6.2. Precondition by aggregation
There are many cases where the FSP matrix +A Jk 1,
already reduced from A, is still too large to store or
compute. One method to even further reduce the size
of thematrix is aggregation [20].

Themethod partitions +Jk 1 into a small number of
disjoint subsets

=+ +⋃
ℓ

ℓJ J .k k1 1,

Let ℓy be one state representing the whole set + ℓX Jk 1,
,

and its probability equals the probability mass of

+ ℓX Jk 1,
:

å=
Î +

( ) ( )ℓ
ℓ

y xP t P t, , .
x X Jk 1,

Let the aggregation operator E define this conversion
from the probability vector of + ℓX Jk 1,

into the prob-
ability distribution of = { }ℓY y :

= +( ) · ( )p Y E p Xt t, , ,Jk 1

and the disaggregation operator F , which approxi-
mates +( )ℓp X t,Jk 1,

from ( )p Y t, , is the right inverse
of E :

=·E F I .Y

The Markov generator for Y can be reduced from

+A Jk 1:

= +· ·B E A F.Jk 1

It can be shown that B represents a proper master
equation: its off-diagonal elements are nonnegative
and each column sums up to 0. The ODEs for the
distribution ofY are then

= >
= +

˙ ( ) · ( )
( ) · ( )

⎧⎨⎩
p Y B p Y

p Y E p X

t t t t

t t

, , ,

, ,
k

k J kk 1

which we can solve using techniques in section 7, then

++( )ℓp X t,J k 1k 1,
can be deduced by

=+ ++( ) · ( ) ( )p X F p Yt t, , , 14J k k1 1k 1

whichmeans that the states in each + ℓX Jk 1,
will have the

same probability. In practice, if the shape of the
probability distribution is known, then different
strategies to disaggregate from ( )p Y t, to +( )p X t,Jk 1

can be employed instead of (14), most notably inter-
polation. We refer to [21] for different methods
toward this end.

Precondition by 6.2. Aggregation (M Hegland, C
Burden, L Santoso, S MacNamara, H Booth,
[20], 2005)

0: Start with +X Jk 1 and +A Jk 1 and tk .

1: Divide +X Jk 1 into + ℓX Jk 1, ʼs.
2: Find the operators E and F based on the aggregation.

3: Compute

= +· ·B E A F ,Jk 1

and

= +( ) · ( )p Y E pt t, .k k k1

4: Solve for

t=+( ) ( ) ( )p Y B p Yt t, exp , .k k k1

5:We have

»+ + +( ) · ( )p F p Yt t, ,k k k1 1 1

or by othermethods, as reported in [21].

7. Approximate the solution

The last stage in each step of the adaptive time-
stepping FSP algorithm is to approximate

t=+ + +( ) ( ) · ( )p A pt texpk k k J k k1 1 k 1
. Obviously, +pk 1 is

the solution of

= +
˙ ( ) · ( ) ( )p A pt t 15Jk 1

at +tk 1, where =( ) ( )p pt tk k k . Therefore, standard
ODE solution techniques can be applied, for instance
Runge–Kuttamethods.

Here we will address some techniques to solve (15)
which take advantage of the fact that +A Jk 1 is constant
over time. Krylov subspace techniques have proved
very efficient for solving this kind of problem for large
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sparse +A Jk 1, by projecting it down to a small dense
matrix, the exponential of which can then be approxi-
mated by Padé orChebyshev polynomials.

A different approach to solving this problem is the
uniformization method, which truncates the Taylor
series expansion of thematrix.

7.1. Approximate by uniformization
Even if +A Jk 1 is preconditioned or not, each step in the
variable time-stepping FSP algorithm ends with
approximating the probability vector at time +tk 1, in
the form of a matrix exponential multiplied by a
vector:

t»++ +( ) ( ) ( )p A pt texp .J k k J J k1k k k1 1

We will simplify the notation so that the problem is
approximating

t( ) ( )A vexp , 16

where thematrix exponential is defined by

åt
t

=
=

¥

( ) ( )
!

( )A
A

k
exp . 17

k

k

0

The idea behind uniformization is to use a truncation
of the series that avoids roundoff errors. To do so, the
method applies the transformation

a
a

= +

= ∣ ∣

P I A

A

1

max
i

ii

where P now has nonnegative entries, and then
approximates (16) using

å

t at
at

at

= -
=

»

at

at

-

=

-

( ) ( ( ))
( )

( )
!

ℓ

A v P I v

P v

P v

e

e
k

exp exp

exp

.
k

k
k

0

The last aspect of the uniformization method to
consider is choosing the number of iterations ℓ.
Noting that the way P is defined implies that
 P0 1 component-wise, and =P 11  , from

which it can be shown that

åt
at

- at

=

-( ) ( )
!

ℓ
A v P ve

k
exp

k

k
k

0 1

if

å at
- at

=

- ( )
!

ℓ
e

k
1 .

k

k

0

In practice, the integration interval +[ ]t t,k k 1 is usually
subdivided to avoid overflow issues. This is often done
by choosing a parameter θ ([22] suggests q = 100) and
writing the solution as

at
q

t
t

t at

=

=

= at-

¯

( ) ( ( ¯ ))¯

⎡
⎢⎢

⎤
⎥⎥

A v P v

m

m
eexp exp m

then evaluating the last equation by starting from
w = v and iterating

w wat¬ at- ( ¯ )¯ Pe exp

m times.

Approximate by 7.1.Uniformization (WGrassmann,
[23], 1977DGross, DMiller, [24], 1984)

0: Start with ( )p tk k , +A Jk 1, tk and parameter θ

1: Initialize a = +∣ ( )∣Amax diag Jk 1 and

a
= + +P I

A
.

Jk 1

2: Find parameters = at
q

⎡⎢ ⎤⎥m and t = t
m

k .

3: Chooseℓ so that

å
at

- at

=

- ( ¯ )
!

ℓ
¯ e

k
1 .

k

k

0
4: Start with w = ( )P tk k .

5: Iterate

åw w
at

¬ at

=

- ( ¯ )
!

ℓ
¯ Pe

ll

l
k

0
m times.

6: Return w=+ +( )p tk k1 1 .

7.2. Approximate byKrylov-based techniques
One of the most effective methods to approximate the
solution in the form of (16) is by using Krylov-based
techniques. Given a vector v and matrix A, we define
theKrylov subspace of orderm to be

= ¼ -( ) { } A v v Av A vspan, , , , .m
m 1

The well-known Arnoldi process produces an
orthonormal basis Vm of ( ) A v,m , and an upper
Hessenberg matrix Hm. The Krylov approximation
is then

t b t»( ) ( ) ( )A v V H eexp exp 18m m 1

where b = v 2  and = ¼( )e 1, 0, , 0 T
1 .

We still need to approximate t( )Hexp m in this
equation. This can be done using the Padé approx-
imation, together with scaling and squaring. This
is a much cheaper problem than approximating

t( )Aexp , since it has been shown in experiments that
(18) yields a good approximation even when m = 40
or less.

The authors in [8] proposed integrating the Krylov
method in the time-stepping FSP algorithmmore than
just to approximate + +( )P tk k1 1 . They did so by exam-
ining the local error

G = + +( )p t1T
k k1 1

and decreasing the step-size by half and reapplying
Krylovmethod if the condition

G > - + ( )
t

t
1 19k

f

1
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fails to be satisfied. The algorithm keeps halving the
step-size until we have (19). Only then, the algorithm
moves on to the new time point.

At the new time point, the algorithm only expands
the state space if the time-step was reduced in the last
time interval. This guarantees that the algorithm does
not waste time finding and operating with a larger
matrix unless it has to.

Approximate by 7.2.Krylov subspace

0: Start with theKrylov orderm, ( )p tk k , +A Jk 1,

and an initial choice for tk .

1: Apply theArnoldi process to find Vm and Hm

for +( ( )) A p t,m J k kk 1 .

2: Approximate the solution at t= ++t tk k k1 :

b t»+ +( ) ( )p V H et exp ,k k m k m1 1 1

where b = ( )p tk k  t( )Hexp m is approximated

by the Padé approximation, with scaling and squaring.

3: G = + +( )p t1T
k k1 1 .

4: Stop if G > - +1
t

t
k

f

1 (see note), otherwise
reduce tk by half and return to Step 2.

Note: For the next step in the time-stepping FSP algorithm, only

expand the state space if halving happened in this step.

8. Tensor decomposition alternative

As will be shown in the example in section 9, the
biggest disadvantage of solving the CME is the ‘curse
of dimensionality’: the size of matrix A is great even
when there are only a few species at play. In such cases,
even if A is sparse, operating with it can be costly. In
recent years, a lot of work has been done in decompos-
ing the CME matrix using tensors, which promises a
reduction in storage space.

In this section, we assume the FSP to take the form
of a hyper-rectangle

= ¼ ´¼´ ¼+ { } { } ( )X n n0, 1, , 0, 1, , . 20J N1k 1

As a slight abuse of notation, we will use A instead of
AJ to refer to the submatrix corresponding to the
hyper-rectangle.

As a motivation, we note that under mild condi-
tions the infinitesimal generator A can be decom-
posed into a sumof tensor products [25–27]

å= Ä - Ä
=

= = ( )A S M M , 21
k

M

i
N

k
i

k
i

i
N

k
i

1
1 1

where each term in the sum corresponds to a chemical
reaction, the matrix Î ´Sk

i n ni i is the ‘shifted-diag-
onal’ matrix corresponding to the change in species i
when reaction k happens, and the diagonal matrix

Î ´Mk
i n ni i that stores the values of i-factor in the

propensity function ak. This allows thematrix A to be
stored in ( ( ))O MN nmax i terms instead of

¼( )O Mn n nN1 2 terms of a straightforward sparse
storage. Moreover, each constituent matrix can be

subject to further compression techniques that
improve further the memory management. We now
turn to some tensor-based techniques that seek to
compress the long probability vector p.

The fact that p is indexed by the multi-dimen-
sional states allows it to be reshaped into an
´¼´n nN1 -dimensional array (or tensor), making the

CME a natural target for tensor decompositions. The
earliest attempt to apply tensor decomposition in the
CME context that we know of is by Hegland and
Garcke in 2011 [25], who sought approximations of
the form

å» Ä
=

= ( )p p , 22
j

r

i
N i

1
1

where the number of terms r is called the rank of the
tensor decomposition and is made as small as possible
for a prescribed tolerance. The approximation can be
stored in ( ( ))O rN nmax i and this avoids the curse of
dimensionality if r is small. About one year later,
Dolgov and Khoromskij proposed a different
approach that used the Tensor Train (TT) format [28].
The TT decomposition breaks p into the
3-dimensional boxes ¼G G G, , , N0 1 where

Î ´ ´ +Gi
n r ni i i 1 (with = =+n n 1N0 1 ). The numbers

ri are called the TT-ranks of p and each Gi a TT-core.
The probability at any state ¼( )x x, , N1 is recovered by

å å¼ = ¼

´ ¼
= =-

-

( )

( ) ( ) ( )

p

G G G

x x

i x x i x x i

, ,

, , , , ,

N
i

r

i

r

N N N

1
1 1

0 0 1 1 1 1 2

N

N

0

0

1

1

which is an instance of tensor contraction. The TT
approach reduces the ¼( )O n nN1 storage of the full
tensor p into ( )O Nn rtt

2 where = { }n nmax i and
= { }r rmaxtt i . If rtt is small the compression rate is

tremendous. The quantized tensor train (QTT) format
used in Kazeev et al [27] takes the compression of the
TT approach further by reshaping the already high-
dimensional probability tensor p into an even higher-
dimensional tensor with many virtual dimensions (as
opposed to the physical dimensions represented by the
chemical species). The TT decomposition is then
applied on top of this reshaped tensor to achieve a
higher compression rate. This is perhaps one of the
most fascinating features of the tensor approaches that
can potentially turn the curse of dimensionality into a
blessing (to paraphrase [29]). Finally, we note that the
techniques described in this paragraph can be applied
equally to compress the matrix A itself to potentially
overcome the memory explosion issue in solving
theCME.

So far we have only mentioned the compression
strategies for the large matrix and vector in the CME
using tensor decompositions. The challenge is to
design numerical schemes that maintain the benefits
brought by these techniques. Unfortunately, classical
matrix methods do not lend themselves easily to the
new formats. The work of Dolgov in adapting the
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GMRES method to TT format reveals incompatibility
between Krylov subspace methods and TT decom-
position: the TT-ranks of the Krylov vectors given by
the Arnoldi iteration increase even though both A and
p have low TT-ranks. There are, however, promising
tools being developed and analyzed for the tensor for-
mat such as the Density matrix renormalization group
(DMRG) solver for linear systems in tensor format.
Based on this, implicit time-stepping schemes can be
employed to integrate the CME. This is essentially the
approach of Kazeev et al [27], where the hp-dis-
continuous Galerkin scheme is applied successfully in
many non-trivial CME problems in quantized TT for-
mat. Alternatively, classical–time-stepping schemes
like implicit Euler can be used to form a global linear
system in tensor format to solve once and for all for the
snapshots of the time-dependent probability distribu-
tion as done by [30]. Such scheme would have been
costly in traditional matrix-vector format, but
becomes much more feasible in tensor format due to
its strong compression ability. We refer to the numer-
ical results in the cited paper that show the prospects of
this new approach.

The tensor decomposition approaches to the CME
are just a wave in the growing currents of tensor tech-
niques with wide applications in different fields of sci-
ence.We refer to the reviews by [29–30].

9. Illustrative example

We will consider the stochastic gene toggle model,
which is a simple model usually employed for its
interesting properties. This example is meant to show-
case how the matrix used in the CME is generated.
There are two species in the model, U and V, and the

production of each has a negative feedback on the
production of the other species. The four reactions
that U and V participate in and their propensities are:
[18, 32]

a

a

a

a

Æ =

Æ =

Æ =

Æ =

⟶

⟶ [ ]

⟶

⟶ [ ]

k
k

k
k

k
k

k
k

U :

U : U

V :

V : V

1
1 1

2
2 2

3
3 3

4
4 4

The parameters, taken from [33], showcase the feed-
back between the two species: = +

+ [ ]
k 0.21

4

1 V 3 ,

= = +
+ [ ]

k k1.09, 0.22 3
4

1 U 3 , =k 14 . k1 and k3
can be thought of as functions of [V] and [U],
respectively. We set the initial state as =x0

=([ ] [ ]) ( )U , V 85, 5 .
Since the numbers of U and V can be any non-

negative numbers, we need a bound so that the FSP
matrix is finite dimensional. Let -n 11 and -n 12 be
the upper bounds on [U] and [V], so there are a total of
n n1 2 states that we keep track of (because [U] and [V]
can be 0).

Each state of the system consists of the num-
bers of genes U and V. To identify the state with
a single number, we need the following indexing
formula

= + +([ ] [ ]) [ ] [ ]i nU , V U 1 V .1

The states and reactions are shown in figure 1. The
state index ([ ] [ ])i U , V is shown in red.

We will now formulate the ODE describing the
evolution of the probabilities over time. The vector
formof theODE is

=˙ ( ) · ( )p A pt t ,

Figure 1.A lattice describing all possible states for the stochastic gene togglemodel, in example 1. The limits in the FSP for geneU is n1,
and geneV is n2. The red numbers are the state indices.
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wherematrix A in ´n n n n1 2 1 2, has the block formof

¼
¼
¼

- -

-

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

D C
B D C

B D

D C

B D

0 0 0
0 0

0 0 0

0 0 0

0 0 0

,

n n

n

0 1

1 2

2

2 1

1

2 2

2

   

where

= ¼ - Î ´( ( ) ( )) B k k ndiag 0 , , 1 n n
3 3 1

1 1

accounts for the production of V, which can be
thought of as an upward transition in figure 1. On the
other hand,

= ¼ Î ´( · · ) C m k m kdiag , ,m
n n

4 4
1 1

describes the downward transition of states in row m
offigure 1, through the death of one geneV.

Finally, the diagonal blocks are computed as

= -
= - - 

D T B
D T B C m, 1m m m

0 0

where Tm depicts the left and right transitions within
row m of figure 1, through the birth or death of one
geneU:
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The gene togglemodel is well-known for its bistability:
there are two different stable steady modes that the
system can converge to, which can be seen easily using
the SSA-driven FSP method [18], shown in the last
row offigure 2.

The first row in figure 2 shows the distributions
from applying the SSA with 105 trajectories. All of the
trajectories converge to only one of the two steady
states. The reason is transparent: the result from the
SSA-driven FSP method informs us that the prob-
abilities of the states in the second mode are between
10−8 and 10−13. Therefore many more trajectories
would be needed for the SSA to reach bimodality. This
is shown more clearly when 108 trajectories are simu-
lated by the SSA, as shown in the second row of
figure 2.

Therefore this example shows that in some cases,
solving the CME by using the FSP can be both more
accurate and much faster than applying the SSA or
other stochasticmethods.

10. Softwares

Here we discuss some softwares and packages that
illustrate the methodology of the FSP and serve as an
efficientmeans to solve theCME.

10.1. FSPToolkit
FSP Toolkit is a MATLAB software for solving the
CME for two species using the FSP, which can be
found at

http://cnls.lanl.gov/~munsky/Software.html
Reference [14] describes the numerical method in

detail. The initial state space is defined by a set of non-
linear inequalities, and it is expanded by applying
r-step reachability and multiple absorbing states. A
number of stochastic phenomena involving two spe-
cies in biological systems are illustrated in the soft-
ware, including activation through linear regulation,
activation with a convex or concave function, and tog-
gle switch. The toolkit is very well explained and there-
fore recommended as a valuable resource for people
new to the FSP approach.

10.2. CMEPy
CMEPy is a Python package for solving the CME,
which can be downloaded and installed at

http://fcostin.github.io/cmepy/index.html
The program expands the state space by r-step

reachability. It can also solve for the case where the
propensities are time-dependent, but only when a
separation of variables can be applied:

a f q=( ) ( ) ( )x xt t, .k k

10.3. Expokit
As mentioned in section 7, Expokit is one of the most
efficient software to calculate the matrix exponential
of either small dense or very large sparse matrices. The
package is written in Fortran and MATLAB [34], and
can be found at

http://www.maths.uq.edu.au/expokit/
It is the basis of ongoing solution techniques of

the FSP.

11.Discussion

The FSP is an especially effective method in a number
of gene expression regulation problems for several
reasons. First of all, there are few species involved and
upper limits on these species numbers are usually
given either from experimental data or theoretical
biology, implying that the size of CME may occasion-
ally be manageable. Secondly, the goal in these
problems is usually to find the model that explains the
experimental data, and to find the model parameter
(i.e. a vector of reaction rates) that results in the
probability distributions that best fit the data at
different times. Since thousands or even millions of
different model parameters have to be computed and
compared, the probability distributions have to be
solved efficiently and fast, in which case the FSP has an
advantage over kinetic Monte Carlo simulations,
which require large numbers of simulations.
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We refer to [35] which contains a number of good
examples where the FSP is applied in real-life gene
expression regulation problems.

However, the ‘curse of dimensionality’makes sol-
ving the CMEnumerically difficult if not impossible in
the case where there are many species. An example for
such a case is the regulation of protein p53 [36], where
there are six species of interest, interacting with each
other through 11 reactions. A bound B is set to be the
maximum number of molecules of each species that
the cell can contain. It is then obvious that the number
of states that the system can be in is roughly B6, where
B can be thousands. We then end up with a very large,
although sparse, matrix A for the CME. In practice,

when we solve the CME using real parameters as
reported in [36], the probability mass requires a pro-
jection of over 4 million states and at each time point,
expanding the state space to the next time step would
explode the projection up to over 15million states.

When such a huge system is encountered, the FSP
method fails and the best numerical methods to
employ are the SSA and otherMonte Carlomethods.

12. Conclusion

The amount of research efforts in the last few years that
built on the finite state projection method is the most

Figure 2.Probability distributions (logscale) of the stochastic gene toggle after 2 s (left column) and 30 s (right column) using SSAwith
105 trajectories (first row), SSAwith 108 trajectories (second row), and SSA-driven FSP [18] (third row).
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convincing evidence of the importance of the method
in solving the chemical master equation. Variants of
the original algorithm have led to tremendous
improvements. This tutorial offered a review of these
methods in a systematic fashion. We outlined the core
ideas behind the variants, and highlighted similarities
and differences between them. We note that in
addition to biological applications, the FSP is found
useful in other areas aswell [37].
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