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ABSTRACT

The chemical master equation (CME) is a system of ordinary differential equations (ODEs) to model the chem-
ical interaction of molecular species. The largeness of the state space of the system makes solving the CME
difficult, and this has motivated reduction strategies such as the finite state projection (FSP). Moreover, if the
reaction rates are functions of the time, the CME becomes an ODE problem with time-dependent coefficients.
Solution techniques include Monte Carlo algorithms, such as the stochastic simulation algorithm (SSA) or
ODE solvers, such as Adams-PECE, Runge-Kutta and backward-differentiation formula (BDF). There are also
Magnus-based solvers that have however not been thoroughly explored in the CME context. Here we introduce
an adaptive time-stepping Magnus-SSA algorithm, in which the CME is solved using a Magnus expansion with
not only a variable time-step but also with a variable state space that changes at each step via the SSA, and
several error approximation approaches are attempted to monitor the adaptivity. We perform comparative tests
against the classical Adams-PECE, Runge-Kutta and BDF methods on three biological problems, showing that
the proposed adaptive Magnus-based variants can be efficient when the CME with time-dependent rates is stiff.

Keywords: Chemical Master Equation, Magnus Expansion, Stiff ODE Solvers, Adaptive Time-Stepping
Scheme.
Section: Mathematical, Physical & Engineering Sciences, Life, Climate & Environmental Sciences, Coupled
Human-Natural Systems, Social Sciences.

1. INTRODUCTION
The chemical master equation (CME) describes the
dynamics of a chemically reacting system as a Markovian
process. It is a common approach to modeling stochas-
tic processes in molecular biology, and can also arise in
other fields of science such as ecological networks, phar-
macokinetic networks and social networks.�1� It is diffi-
cult to solve the CME directly because it can involve a
very large, or even infinite, number of ordinary differential
equations. Hence, the CME has traditionally been solved
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indirectly by using Monte Carlo methods, such as Gille-
spie’s Stochastic Simulation Algorithm (SSA)�2,3� or the
First Reaction Method (FRM).�4� These algorithms simu-
late reactive events in the chemical processes, and averag-
ing their results from a large number of trajectories can
offer insights into the model as well as statistics of interest.
Approximate representations using stochastic differential
equations (SDEs) yield other approaches.�5,6�

In recent years, there has been great interest to solve
the CME directly, using notably the finite state projec-
tion method (FSP)�7� to reduce the size of the CME
by setting bounds on the state space. We have surveyed
many of the FSP variants that seek to either increase their
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accuracy or decrease their execution time.�8� However,
these FSP algorithms can only be applied when reaction
rates are constant. In biological problems where reaction
rates can change over time, for instance due to cell vol-
ume increase or change in temperature, the CME may be
approached with ODE solvers, such as Adams, Runge-
Kutta, or backward-differentiation formula.
The Magnus expansion�9� offers an alternative approach

to dealing with the CME with time-dependent rates.
It expresses the solution to the ODE as the matrix expo-
nential of an infinite series involving multiple integrals
and nested commutators. Although originally a theoreti-
cal technique, it has recently been developed as a practi-
cal ODE solver.�10–14� The Magnus series is truncated, the
terms are rearranged to optimize the execution time, and
the integrals are approximated by a quadrature formula.
In this paper, we embed the SSA in the Magnus

method to reduce the state space, which allows for lower
run time while retaining the accuracy. We also revisit
two error estimation techniques in the literature, as well
as implement two other error control procedures, and
employ these to make the Magnus method adaptive both
in terms of the time step and the state space. The result-
ing algorithms are then tested against Adams, Runge-Kutta
and backward-differentiation formula for three biological
problems in which the CME with time-dependent rates
emerges.
The paper is organized as follows: the chemical mas-

ter equation is defined in Section 2. Section 3 revisits two
Monte Carlo methods commonly used to solve the CME.
Some traditional ODE solvers are described in Section 4,
and the Magnus expansion as well as the Magnus-SSA
algorithm are presented in Section 5. Section 6 covers
several error estimation methods, together with the result-
ing adaptive time-stepping Magnus algorithms. Numerical
tests are defined and results are given in Section 7, and
concluding remarks follow in Section 8.

2. CHEMICAL MASTER EQUATION
Consider a chemical reaction system with N molecu-
lar species S1� � � � � SN that interact through M reactions
R1� � � � �RM . The state vector of the system is defined as

x�t�= �x1� � � � � xN �
T

where xl is the count for species Sl at time t.
The likelihood for each reaction Rk to occur is the

time-dependent reaction rate ck�t�. The propensity func-
tion �k�x�t�� t� at the current state x�t� and current time t
is defined so that the probability of reaction Rk occurring
during the infinitesimal time interval �t� t+ dt� is equal
to �k�x�t�� t�dt. If this reaction occurs, the state vector is
updated by the stoichiometric vector �k, which stores the
changes in species counts:

x�t�= x�t�+�k

The chemical master equation (CME)�15� formulates that
P�x� t� = Prob	x�t� = x
, the probability that the system
is in state x at time t, satisfies:

dP�x� t�
dt

=
M∑
k=1

�k�x−�k� t�P�x−�k� t�

−
M∑
k=1

�k�x� t�P�x� t� (1)

Let X = 	x1� � � � �xn
 be the ordered set of n possible
states, where xi = �x1i� � � � � xNi�

T . Assuming that the sys-
tem was initially at a known state x�0� ∈ X at t = 0,
Eq. (1) can be rewritten as a system of ordinary differ-
ential equations (ODEs) governing the change in p�t� =
�P�x1� t�� � � � � P �xn� t��

T :{
ṗ�t�= A�t� ·p�t��
p�0�= p0

(2)

from the known initial distribution p0, defined using

P�x�0�=
{
1� if x= x�0��

0� if x �= x�0�

and the transition rate matrix A�t�= �aij�t�� ∈ �n×n is

aij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
M∑
k=1

�k�xj � t�� if i = j

�k�xj � t�� if xi = xj +�k

0� otherwise

Since the reaction rates ck are time-dependent, A changes
over time.
The state space X can be infinite in theory, but is kept

finite in practice, although n can be very large. In this case,
we can apply the finite state projection (FSP),�7� which
reduces the state space to only the probable states during
the time period of interest. The vectors p�t�, p0 and matrix
A�t� in (2) are then truncated to only values corresponding
to this reduced finite state space.
We will discuss different approaches for solving the

ODE system (2) in the Sections 4 and 5. For convenience,
we will denote the ODE problem as

ṗ�t�= f �t�p�t��≡ A�t� ·p�t�

3. MONTE CARLO METHODS
To solve (2) indirectly, Monte Carlo methods simulate
trajectories from the initial state x�0� at t = 0 to a pre-
scribed final time tf . Statistics of interest are then drawn
from the final states of the trajectories, such as means
of the species counts, variance, or marginal distributions.
Many Monte Carlo methods are based on the works of
Gillespie.�2,3� We describe here two methods, first reaction
method (FRM) and stochastic simulation algorithm (SSA).
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3.1. First Reaction Method
At every time step in each trajectory, the first reaction
method (FRM)�4� seeks the reaction that occurs next, and
the time it takes for it to occur. Below is a pseudocode for
the overall procedure:
1. Start from initial time t = 0 and initial state x= x�0�
2. Generate �1� � � � � �M , uniformly distributed in �0�1�
3. For every reaction k, find the minimal positive number
k so that ∫ t+k

t
�k�x�t�� u�du= ln

(
1
�k

)

4.  is the minimum of 1� � � � � M , and j is the index of
the reaction with  = j
5. Reaction j is the first to occur next, at t+  . Update
the state and time accordingly:

x← x+�k

t ← t+ 

6. Return to step 2 until reaching final time tf .

FRM and other Monte Carlo methods approximate the
probability distribution of the system at the final time tf by
simulating a large number of trajectories, and computing
the frequency of each state x in the state space as

P�x� tf �≈ frequency�x�= nx

ntotal

(3)

where nx is the number of trajectories that end up in state
x, and ntotal is the total number of trajectories.
FRM is an exact method, because the trajectories are

generated according to the correct probability distributions.
For each problem in our numerical tests, we use the FRM
frequencies to compare the results of the ODE solvers.

3.2. Stochastic Simulation Algorithm
If the reaction rates are time-independent, the first reaction
method and the stochastic simulation algorithm (SSA)�2,3�

are equivalent and the pseudocode simplifies to:
1. Start from initial time t = 0 and initial state x= x�0�
2. Find the propensity sum �sum =∑M

k=1 �k�x�t�� t�
3. Generate �1 and �2, uniformly distributed in �0�1�
4. j is the smallest integer so that

j∑
k=1

�k�x� t� > �1�sum

5. Compute  = ln�1/�2��sum

6. Reaction j is the first to occur next, at t+  . Update
the state and time accordingly:

x← x+�k

t ← t+ 

7. Return to step 2 until reaching final time tf .

Note that the SSA is inexact for our purpose, because it
does not account for the time dependencies of the reaction
rates. However, SSA is much faster than FRM, because
the latter contains M optimization problems and possibly
many integration problems at every time step.

4. ODE SOLVERS
We will now describe several traditional ODE solvers for
the purpose of solving (2) directly. A detailed introduc-
tion to different classes of ODE solvers can be found in
Refs. [16–18]. Here we summarize the ones used in our
numerical tests.

4.1. Adams
Adams methods form a family of linear multi-step meth-
ods,�19� among which are explicit Adams-Bashforth and
implicit Adams-Moulton. Adams-Bashforth proceeds with
the explicit formulae of order r :

tk+1 = tk+hk�

pk+1 = pk+hk��
AB
r−1 fk+· · ·+�AB

0 fk−r+1��

fk+1 = f �tk+1�pk+1�

where 	�AB
i 
r−1

i=0 are given analytically based on a Lagrange
interpolation polynomial.
Adams-Mouton, on the other hand, is implemented as

tk+1 = tk+hk�

pk+1 = pk+hk

(
�AM
r fk+1+· · ·+�AM

0 fk−r+1

)
�

fk+1 = f �tk+1�pk+1�

where 	�AM
i 
ri=0 are given analytically.

We use the Adams-PECE scheme by Shampine
and Gordon,�20� which implements the implicit Adams-
Moulton. The unknown pk+1 ≈ p�tk+1� is involved in both
sides of the formula, leading to a nonlinear problem that is
approximately solved with a fixed-point scheme starting
from the solution of the explicit Adams-Bashforth.

4.2. Runge-Kutta
Runge-Kutta methods form a class of multistage, one-step
iteration ODE solvers. The explicit Runge-Kutta of order
r proceeds with the scheme

tk+1 = tk+hk�

yi = pk+hk

i−1∑
j=1

mRK
ij f �tk +hkc

RK
j � yj �� i = 1� � � � � r�

pk+1 = pk+hk

r∑
j=1

bRK
j f �tk+hkc

RK
j � yj �

in which the coefficients 	mRK
ij 
si�j=1, 	b

RK
i 
si=1 and 	cRKi 
si=1

are defined by their Butcher-tableau.
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In this comparison, we use the solver RK78 in the
RKSUITE by Brankin et al.,�21� which is a reputed Runge-
Kutta method that controls the error and stepsize by using
embedded Runge-Kutta formulae with orders 7 and 8. The
solutions are denoted as Runge-Kutta in the numerical
tests.

4.3. Backward-Differentiation Formula
Backward-differentiation formula (BDF) methods are lin-
ear multi-step and follow the formula of order r :

tk+1 = tk+hk�

pk+1 = hk�
BDF
r f �tk+1�pk+1�+�BDF

r−1 fk+· · ·+�BDF
0 fk−r+1�

fk+1 = f �tk+1�pk+1�

where the coefficients 	�BDF
i 
r−1

i=0 and �BDF
r are given ana-

lytically. The formula forms a nonlinear problem, because
pk+1 appears on both sides.
We use the VODPK/BDF implementation�22� which has

different options in solving the nonlinear problem. Here
we confine to:
1. BDF-GM-LU0: Newton root finding scheme; each lin-
ear system in the implicit scheme is solved iteratively
by SPIGMR (Scaled Preconditioned Incomplete GMRES),
preconditioned by the incomplete LU0 decomposition,
which discards elements not in the sparsity pattern of A.
2. BDF-LU0: The linear system in the impiclit scheme is
solved directly by incomplete LU0 decomposition.

5. MAGNUS-BASED METHODS
5.1. Magnus Expansion
The Magnus expansion�9–11� expresses the theoretical solu-
tion of (2) as

p�t�= exp���0� t�� ·p0 (4)

where the matrix exponential is defined as

exp���=
�∑
l=0

�l

l!
and ��0�t� can be written as an infinite series whose terms
involve multiple integrals and nested commutators:

�1 =
∫ t

0
A��d�

S�1�
n = ��n−1�A��

S�j�
n =

n−j∑
m=1

��m�S
j−1
m �� 2 ≤ j ≤ n−1�

S�n−1�
n = adn−1

�1
�A��

�n =
n−1∑
j=1

Bj

j!
∫ t

0
S�j�
n ��d� n≥ 2�

��0�t� =
�∑
n=1

�n

(5)

where Bj are Bernoulli numbers and the adjoint represen-
tation is defined as

adjA�B� = �A� adj−1
A �B��� ad0A�B� = B

The Magnus integration method then follows:

tk+1 = tk+hk�

pk+1 = exp���q�

�tk�hk�
� ·pk

(6)

where �
�q�
�tk�hk�

is an approximation of ��tk�hk�
to the qth

order. To derive � �q�

�tk�hk�
, the Magnus expansion (5) is trun-

cated to the first q terms, and the integrals are approxi-
mated by a quadrature rule.
The Magnus expansion has been employed extensively

in physics where it is sometimes referred to as time-
dependent exponential perturbation theory.�11� It has the
appeal that its approximation preserves important qualita-
tive properties of the exact solution.�13,23� It has also been
used in the field of geometric numerical integration to
reproduce important geometric structures in the solutions,
a goal not straightforwardly possible with general-purpose
integration methods.
We implement the 4th-order Magnus integration method

using the Gauss-Legendre quadrature rule:�10,12,24�

A1 = A
(
tk+

(
1
2
−

√
3
6

)
hk

)
�

A2 = A
(
tk+

(
1
2
+

√
3
6

)
hk

)
�

�
�4�
�tk�hk�

= hk

2
�A1+A2�+

h2
k

√
3

12
�A2�A1�

5.2. Krylov Subspace Technique
The term exp�� �4�

�tk�hk�
� ·pk in (6) is computed by Expokit,

which implements a Krylov-based algorithm that seeks to
approximate exp��� ·p, the action of the matrix exponen-
tial on a vector, as a projection in the Krylov subspace of
order m

�m���p�= span	p�� ·p� � � � � �m−1 ·p

The Arnoldi process is employed to compute an orthonor-
mal basis Vm of this subspace, and an associated Hessen-
berg matrix Hm. The Krylov approximation is then

exp��� ·p≈ �Vm exp�Hm�e1

where � = �p�2 and e1 = �1�0� � � � �0�T . The Padé
approximation,�25� together with scaling and squaring, is
employed to compute exp�Hm�. Other variants with an
incomplete orthogonalization in the Arnoldi process could
also be attempted,�26� but this was not our focus here.
Krylov-based methods have proved efficient when the

matrix is sparse, as is the case in many biological prob-
lems. They also have the appeal of being matrix-free by
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only requiring the matrix-vector product ��4�
�tk�hk�

·v to com-

pute exp���4�
�tk�hk�

� · pk. Our numerical tests use the vanilla
Expokit with Krylov order m= 30, producing approxima-
tions well within the tolerance tol = 10−5 even for prob-
lems with large sizes.

5.3. Magnus with an Adaptive SSA-Based State Space
During the integration time of any ODE solver for (2),
most of the values in p�t� will be extremely small and
therefore computing the full distribution can be expensive
without gaining much accuracy. For CME problems with
time-independent rates, the FSP-SSA method�27� confines
the state space X at each step to only the most probable
states at that step. To apply this strategy in our context,
we proceed as follows: knowing the current pk ≈ p�tk� and
having chosen a step-size hk, we wish to advance to the
next approximation pk+1 ≈ p�tk+hk� using (6) with �

�4�
�tk�hk�

restricted to only the subset of states that the system is
likely to occupy during the time interval �tk� tk+hk�. This
is implemented by first dropping current states with low
probabilities in pk, then sampling SSA trajectories from
the remaining states and updating it to include all states
that the SSA paths travel through. The ‘roughness’ in the
paths is then smoothed out by the r-step reachability,�7�

which seeks all states that can be connected to the state
space by r reactions or less, and expands the state space
to include those. Below is the corresponding pseudocode.
1. X is reduced to states with probability >10−16

2. X is expanded by SSA runs over �tk� tk+hk� and r-step
reachability with r = 5
3. A�t� is updated to only states in X
4. Compute pk+1 = exp���4�

�tk�hk�
� ·pk.

The implementation uses a hash table to keep track of
the state space and also note that A�t� is in functional
form for the matrix-free Krylov stage, with the action
of the matrix exponential in the last step done by using
Expokit with the matrix-vector operator ��4�

�tk�hk�
· v defined

through:�24�

A1 = A

(
tk+

(
1
2
−

√
3
6

)
hk

)
�

A2 = A

(
tk+

(
1
2
+

√
3
6

)
hk

)
�

w1 = A1v�

w2 = A2v�

w3 = A2w1�

w4 = A1w2�

�
�4�
�tk�hk�

· v= hk

2
�w1+w2�+

h2
k

√
3

12
�w3−w4�

It is important to mention again that SSA is considered
inexact for the CME with time-dependent rates, because

reaction rates are kept constant during each time step.
However, the SSA is used only to expand the state space.
The probability distribution is computed using the Magnus
method instead, therefore the results are not compromised.
In the cases where the reaction rates change dramatically,
the state space can be expanded using the FRM. This will
be more time-consuming, but the state spaces will not be
distorted.
The adaptive MAGNUS-SSA method requires a scheme

for computing the step-size hk. This will be completed in
the next section.

6. ADAPTIVE TIME-STEPPING SCHEMES
As can be seen from the previous section, the error in
MAGNUS-SSA comes from a combination of four different
error sources:

• The FSP error: from truncating the state space
• The Magnus truncation error: from truncating the infi-

nite Magnus series
• The quadrature error: from approximating the inte-

grals involved with quadrature rules
• The Krylov error: from approximating pk+1 =

exp��� ·pk using Krylov subspace techniques.

The FSP error exists for all ODE solvers and MAGNUS-
SSA. However, in our numerical tests, for the ODE solvers,
a sufficiently big state space was truncated at the begin-
ning of each algorithm according to a large number of
SSA trajectories, and is fixed during the entire integra-
tion. The FSP error for these schemes is therefore mini-
mal. In MAGNUS-SSA, the state space is changed at each
time step, but the large number of SSA trajectories and
r-step reachability with large r required to build the state
space assure that the FSP error is also insignificant. There-
fore we assume that the FSP error is negligible for all
algorithms.
The Krylov error, on the other hand, is automatically

managed by Expokit,�28� which is the most extensive soft-
ware for computing the matrix exponential and has been
reported to be well suited for large sparse matrices.�25�

Expokit allows an error tolerance, so we can also leave out
the Krylov error for simplicity.
The dominant error of the Magnus-based methods,

therefore, comes from truncating and interpolating the
Magnus series. We seek to approximate this error and use
it in an adaptive time-stepping Magnus-based scheme.

6.1. Adaptive Time-Stepping Scheme for Magnus-SSA
At any time interval �tk� tk+hk�, the local error is defined
to be

error�tk+1�= �pk+1− p̄k+1�1
where

pk+1 = exp���4�
�tk�hk�

� ·pk
J. Coupled Syst. Multiscale Dyn., Vol. 5(2), 1–13 http://www.aspbs.com/jcsmd 5
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is the MAGNUS-SSA approximation to the exact solution

p̄k+1 = exp���tk�hk�
� ·pk

The following pseudocode is a template for the overall
step-by-step integration process using a traditional step-
size control.

Algorithm (MAGNUS-SSA).

1: Initialize state space and p0 and time t0 = 0
2: Initialize step-size h0 = 0�5 and step k = 0
3: While tk < tf do
4: Update state space and get pk+1 = exp�� �4�

�tk�hk�
�pk

as discussed in the previous section
5: Compute the error estimate error�tk+1�
6: if error�tk+1� > � then
7: hk ← 0�5 ·hk

8: go to Step 3
9: end if
10: tk+1 ← tk+hk

11: hk+1 ← �

(
�

error

)1/p

hk

12: k← k+1
13: end While

The safety factor � is 0�5 in our code. The error tol-
erance is � = 10−5, and Expokit is implemented with the
same tolerance. The parameter p in Step 11 is set as the
order of the error estimator, to be discussed next. The dis-
cussed variants use the same Magnus approximation in
Step 3 and only differ in how they perform the error esti-
mation in Step 5 of the template. We will see later that
Step 3 is moved to be after the if-block in the case of
MAGNUS-SSA-4 because it has an a priori error control.

6.2. Error Approximation
A traditional error estimating technique is to compute
the results of one ODE solver with two different orders,
and compute the difference. MacNamara and Burrage�24�

developed a local error estimate based on this embedding
scheme:

error�tk+1� ≈ � exp���4�
�tk�hk�

� ·pk− exp���2�
�tk�hk�

� ·pk�1
= �pk+1− exp���2�

�tk�hk�
� ·pk�1

where exp�� �2�
�tk�hk�

� · pk is the 2nd-order Magnus with
Gauss-Legendre quadrature rule, computed with Expokit
where the matrix-vector product operator �

�2�
�tk�hk�

· v
defined as

A1 = A

(
tk+

(
1
2
−

√
3
6

)
hk

)
�

A2 = A

(
tk+

(
1
2
+

√
3
6

)
hk

)
�

w1 = A1v�

w2 = A2v�

�
�2�
�tk�hk�

· v= hk

2
�w1+w2�

Since this error estimate is based on the 2nd-order Magnus
approximation, it is of order p = 2. The algorithm will
proceed with the 4th-order Magnus approximation instead.
This Magnus implementation is denoted MAGNUS-SSA-1
in our numerical tests.
At each time step, MAGNUS-SSA-1 requires two

Expokit runs, one for the 2nd-order solution and one for
the 4th-order solution, where only the latter is required to
proceed. This can be time-consuming, therefore we pro-
pose a new cheaper local error estimate that removes the
need to explicitly compute the 2nd-order approximation.
The starting point is the observation that the inverse of a
matrix exponential is

�exp����−1 = exp�−��

which allows us to rewrite the terms in error�tk+1� as

�exp�� �4�
�tk�hk�

�− exp�� �2�
�tk�hk�

�� ·pk
= �I− exp�� �2�

�tk�hk�
� exp�−�

�4�
�tk�hk�

�� ·pk+1 (7)

From this, we use the fact that the product of two
matrix exponentials can be approximated using the Baker-
Campbell-Hausdorff formula, and the important fact that
the matrix-vector product for the 2nd-order Magnus algo-
rithm is embedded in that for the 4th-order Magnus algo-
rithm. This reduces (7) into[

I−exp���2�
�tk�hk�

−�
�4�
�tk�hk�

− 1
2
��

�2�
�tk�hk�

��
�4�
�tk�hk�

�+��h4
k��

]
·pk+1

=
[
−�

�2�
�tk�hk�

+�
�4�
�tk�hk�

+ 1
2
��

�2�
�tk�hk�

��
�4�
�tk�hk�

�+��h4
k��

]
·pk+1

=
[
h2
k

√
3

12
�A2�A1�+

h3
k

√
3

48
�A1+A2��A2�A1��

+��h4
k��

]
·pk+1

where A1 and A2 are defined as in the MAGNUS-SSA
algorithm.
We can derive from this a cheap approximation of the

local error estimate in MAGNUS-SSA-1:

u1 = A1 ·pk+1� u2 = A2 ·pk+1� u3 = A2 ·u1�

u4 = A1 ·u2� u5 = A1 ·u1� u6 = A2 ·u2�

u7 = A1 ·u3� u8 = A2 ·u4� u9 = A2 ·u3�

u10 = A1 ·u4� u11 = A1 ·u6� u12 = A2 ·u5�
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error�tk+1� =
∥∥∥∥h2

k

√
3

12
�u3−u4�

+ h3
k

√
3

48
�2u7−2u8+u9−u10+u11−u12�

∥∥∥∥
1

The Magnus implementation using this error estimate is
denoted MAGNUS-SSA-2 in the numerical tests. Because
it is based on MAGNUS-SSA-1, the error is also of
order p = 2.
Another well-known error approximating approach is

computing the difference between the result of the ODE
solver with the result of the same solver with halved time-
step. Using this technique, the local error is then:

error�tk+1� ≈ �exp�� �4�
�tk�hk�

� ·pk−exp�� �4�
�tk+hk/2�hk/2�

�

·exp�� �4�
�tk�hk/2�

� ·pk�1
= �pk+1−exp�� �4�

�tk+hk/2�hk/2�
� ·exp�� �4�

�tk�hk/2�
� ·pk�1

The Magnus implementation using this error estimate is
called MAGNUS-SSA-3 in the numerical tests. A disadvan-
tage of this approach is that Expokit has to be run three
times for every time step, one for the normal 4th-order
Magnus approximation and two for the ‘corrector.’ On the
other hand, the error estimate is of order p = 4, therefore
the time steps will be less conservative than MAGNUS-
SSA-1 and MAGNUS-SSA-2.
The final approach of approximating the local error in

consideration is based on the leading term of the error in
truncating the Magnus expansion. Iserles, Marthinsen and
Nørsett�12� derived

�
�4�
�tk�hk�

=��tk�hk�
+ h4

k

720

×�A�tk+hk���A�tk+hk���A�tk��A�tk+hk����+��h5
k�

They used the Baker-Campbell-Hausdorff formula to
obtain a local error estimate of order p = 4 from this
equation:

error�tk+1�

=
∥∥∥∥ h4

k

720
�A�tk+hk���A�tk+hk���A�tk��A�tk+hk���� ·pk

∥∥∥∥
1

Expanding the nested commutators in the equation and
collecting like-terms, we get a commutator-free form of
this error estimate, used in MAGNUS-SSA-4:

A0 = A�tk��

A3 = A�tk +hk��

u1 = A3 ·A3 ·A0 ·A3 ·pk�
u2 = A3 ·A0 ·A3 ·A3 ·pk�

u3 = A3 ·A3 ·A3 ·A0 ·pk�
u4 = A0 ·A3 ·A3 ·A3 ·pk�

error�tk+1�=
∥∥∥∥ h4

k

720
�3u1−3u2−u3+u4�

∥∥∥∥
1

A great advantage of MAGNUS-SSA-4 over the other Mag-
nus variants in our comparison is that the error estimate is
a priori. Its implementation moves Step 3 to be after the
if-block in the template given earlier so that for each time
step, it calculates the error before committing to proceed,
and therefore does not run Expokit unnecessarily. There
is also only one Expokit run per time step, keeping the
execution time minimal.
As implemented here, this error estimate has the short-

coming that it takes into account only the Magnus trun-
cation error and not the quadrature error, unlike the other
Magnus variants. The quadrature error is notoriously dif-
ficult to estimate,�29,30� and it depends on the behavior
of A�t�.

7. NUMERICAL TESTS
All numerical tests were done using resources of the
Alabama Supercomputer, which houses two supercomput-
ers called SGI UV and DMC. The user can request a job to
be executed on either of them, or can simply let the oper-
ating system select the more suitable system depending on
the workload and availability. All codes were written in
FORTRAN 77 and were run on the large queue of the SGI
UV with 1 processor core (Xeon E5-4640 CPU operating
at 2.4 GHz), 360 hr time limit and 120 GB memory limit.
The models in our numerical tests arise from differ-

ent fields of biology. In each numerical test, the distribu-
tions from solving (2) by the ODE solvers are compared
with the frequencies from 10,000 FRM trajectories, com-
puted by (3). The fixed FSP state space for the ODE
solvers is found by finding the maximum and minimum
of each species count during the 10,000 FRM trajecto-
ries, except for MAGNUS-SSA, which does not require a
priori fixed FSP bounds and changes the state space adap-
tively instead. These FSP bounds are reported for each
numerical test.
The error of each ODE solver is defined to be the max-

imum of 1-norm differences between the marginal distri-
butions from that ODE solver and the FRM.

7.1. Test 1—The Model of Two Competing
T Cell Clonotypes

The first problem in our comparison models the com-
petition between T cell clonotypes.�24,31� We consider
two species:

V1 � T cell clonotype 1�

V2 � T cell clonotype 2

J. Coupled Syst. Multiscale Dyn., Vol. 5(2), 1–13 http://www.aspbs.com/jcsmd 7



Journal of Coupled Systems and Multiscale Dynamics

R
es

ea
rc
h
A
rt
ic
le

Table I. Results from the ODE solvers for the model of two competing
T cell clonotypes (Test 1). The error is computed as the maximum 1-norm
difference between the marginal distributions from each ODE solver and
the FRM.

ODE solver Time cost and note Error

Adams-PECE Incorrect solver (flag 4) N/A
Runge-Kutta 1 s 0.0481
BDF-GM-LU0 1 s 0.1624
BDF-LU0 5 s 1.3152
MAGNUS-SSA-1 10 s 0.0478
MAGNUS-SSA-2 8 s 0.0476
MAGNUS-SSA-3 4 s 0.0479
MAGNUS-SSA-4 3 s 0.0491

which can interact through a multivariate birth-death
process:

 c1−→ V1�

V1

c2−→�

 c3−→ V2�

V2

c4−→
The reaction rates are:�24�

c1 = ��t� ·
(

0�5�V1�

�V1�+ �V2�
+ 0�5�V1�

�V1�+1000

)
(year−1��

c2 = 1 (year−1��

c3 = ��t� ·
(

0�5�V2�

�V1�+ �V2�
+ 0�5�V2�

�V2�+1000

)
(year−1��

c4 = 1 (year−1�

where ��t� = 60/�1+ �t/15�5� models the decreasing
stimulation that the clonotypes receive.
We start from the initial values

V1 = 10

V2 = 10

until the end time tf = 5 (years). The FRM trajectories
during this time interval result in the bounds for the FSP
state space:

0≤ V1 ≤ 57�

0 ≤ V2 ≤ 51
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Fig. 1. Probability distributions from the model of two competing T cell clonotypes (Test 1).

The FSP state space contains n= 3016 states and the CME
matrix contains nz = 14860 nonzero elements. The norm
of the CME matrix at t = 0 is 513603.
The results from the ODE solvers are summarized in

Table I. Figure 1 shows the probability distributions from
these ODE solvers, and Figure 2 shows the local error esti-
mates from all MAGNUS-SSA algorithms. Figure 1 shows
that the solutions from Runge-Kutta and theMAGNUS-SSA
implementations agree with the FRM frequencies. Adams-
PECE did not finish, while the solutions of both BDF-
GM-LU0 and BDF-LU0 fail to follow the shape of the
correct distributions, resulting in noticeable errors, as seen
in Table I. Figure 2 shows that the error estimates from all
MAGNUS-SSA variants are very similar.

7.2. Test 2—The Epidemic Model with Periodic
Contact Rate

The second problem in our comparison is an epidemic
model,�32–35� consisting of three species:

S � susceptible population�

I � infected population�

R� recovered population

These populations can interact in six different reactions:

S+ I
c1−→ 2I�

I
c2−→ R�

R
c3−→ S�

S
c4−→�

I
c5−→�

R
c6−→

with reaction rates

c1 = 0�003f �t� (day−1��

c2 = 0�02 (day−1��

c3 = 0�007 (day−1��

c4 = 0�002 (day−1��
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Fig. 2. Error estimates in the MAGNUS-SSA variants from the model of two competing T cell clonotypes (Test 1).

c5 = 0�05 (day−1��

c6 = 0�002 (day−1�

where f �t�= �1+0�6 sin�2� · t/6�� describes the periodic
contact rate between the infected population and the sus-
ceptible population.
The initial values for the populations are:

S = 200�

I = 10�

R= 0

and the end time is tf = 10 (years). The bounds for the
FSP state space are:

0 ≤ S ≤ 200�

0 ≤ I ≤ 17�

0 ≤ R≤ 35

There are n= 1237356 states in the FSP state space, and
nz = 8518611 nonzero elements in the CME matrix. The
norm of the CME matrix is 78286181 at t = 0.
Table II summarizes the results from the ODE solvers.

Figures 3 and 4 show the probability distributions from the
ODE solvers and the error estimates in the MAGNUS-SSA
variants. Because the solutions from BDF-GM-LU0 and
BDF-LU0 are very far from the correct probability distri-
butions and even contain negative values (see Table II),

Table II. Results from the ODE solvers for the epidemic model with
periodic contact rate (Test 2). The error is computed as the maximum
1-norm difference between the marginal distributions from each ODE
solver and the FRM.

ODE solver Time cost and note Error

Adams-PECE 243 s 0�0550
Runge-Kutta 172 s 0�0550
BDF-GM-LU0 189 s 136�2503
BDF-LU0 17 s 71�4624
MAGNUS-SSA-1 3924 s 0�0550
MAGNUS-SSA-2 2211 s 0�0550
MAGNUS-SSA-3 2165 s 0�0572
MAGNUS-SSA-4 509 s 0�0552

their approximations are not included in Figure 3.
The solutions from Adams-PECE, Runge-Kutta and all
MAGNUS-SSA variants are shown in agreement with the
FRM frequencies. Figure 4 shows that the error estimates
are periodic, with slight disturbances when f �t� reaches
maximum or minimum.

7.3. Test 3—The Transcriptional Regulatory Model
The final biological problem for comparing the ODE
solvers depicts a transcriptional regulatory system.�36� The
problem consists of six species:

M: protein (monomer),
D: transcription factor (dimer),

DNA: DNA template, free of dimers,
DNA.D: DNA template, bound at one binding site,

DNA.2D: DNA template, bound at both binding sites,
RNA: mRNA produced by transcription

which can interact through ten reactions:

RNA
c1−→ RNA+M�

M
c2−→�

DNA.D
c3−→ RNA+DNA.D�

RNA
c4−→�

DNA+D
c5−→ DNA.D�

DNA.D
c6−→DNA+D�

DNA.D+D
c7−→ DNA.2D�

DNA.2D
c8−→ DNA.D+D�

M+M
c9−→ D�

D
c10−→M+M

The reaction rates are:

c1 = 0�043 (s−1
��

c2 = 0�0007 (s−1��

c3 = 0�078 (s−1��
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Fig. 3. Probability distributions from the epidemic model with periodic contact rate (Test 2).

c4 = 0�0039 (s−1��

c5 =
0�012 ·109
A ·V �t� (s−1��

c6 = 0�4791 (s−1��

c7 =
0�00012 ·109

A ·V �t� (s−1��

c8 = 0�8765 ·10−11 (s−1
��

c9 =
0�05 ·109
A ·V �t� (s−1��

c10 = 0�5 (s−1�

where A is the Avogado’s constant, and V �t� is the cell
volume at time t, which increases from the initial value
V �0�= 10−15 in accordance to

V �t�= V �0�eln�2�t/

during the entire cell cycle time period  = 35 minutes
until the cell divides.
We wish to follow the distributions of the count of

each species from the initial state where the cell has
2 monomers, 6 dimers, and two unbound DNAs:

M= 2� D= 6�

DNA= 2� DNA.D= 0�

DNA.2D= 0� RNA= 0

until the final time tf = 300 (s).
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Fig. 4. Error estimates in the MAGNUS-SSA variants from the epidemic model with periodic contact rate (Test 2).

The FSP bounds are

0 ≤M≤ 50� 0 ≤ D≤ 81�

0 ≤ DNA≤ 2� 0≤ DNA.D≤ 2�

0≤ DNA.2D≤ 2� 0 ≤ RNA ≤ 24

There are n= 2822850 states in the FSP state space, and
the CME matrix contains nz = 24093072 nonzero ele-
ments. The norm of the CME matrix at t= 0 is 311973491.
Table III summarizes the results from the ODE solvers.

The probability distributions from the ODE solvers and
the error estimates are plotted in Figures 5 and 6. Sim-
ilarly to Test 2, BDF-GM-LU0 and BDF-LU0 produce
inaccurate results (see Table III). Furthermore, Adams-
PECE detected that the problem is stiff and therefore did
not finish. Their solutions are therefore not included in
Figure 5. Runge-Kutta and all MAGNUS-SSA variants fin-
ished and their solutions followed the FRM frequencies
faithfully. Figure 6 shows that the MAGNUS-SSA error
estimates are stable, with clear agreement between the
2nd-order and the 4th-order approximations, respectively.

7.4. Observations
The three biological problems in the numerical tests were
chosen because they exhibit distinct features. The model
of two competing T cell clonotypes is symmetrical. Over
time, the probability mass concentrates on states with low
V1 counts and high V2 counts, or those with high V1 counts
and low V2 counts, because the model is also bimodal.
The epidemic model with periodic contact rate, on the
other hand, is monomodal with periodic time-dependency.
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Table III. Results from the ODE solvers for the transcriptional regu-
latory model (Test 3). The error is computed as the maximum 1-norm
difference between the marginal distributions from each ODE solver and
the FRM.

ODE solver Time cost and note Error

Adams-PECE Incorrect solver (flag 5) N/A
Runge-Kutta 82415 s 0�0465
BDF-GM-LU0 1203 s 78�2631
BDF-LU0 88 s 273�3214
MAGNUS-SSA-1 137304 s 0�0465
MAGNUS-SSA-2 52764 s 0�0465
MAGNUS-SSA-3 78505 s 0�0465
MAGNUS-SSA-4 49139 s 0�0465

Finally, the transcriptional regulatory model is monomodal
and very stiff, evidenced in the differences in magnitude
of the reaction rates and the big norm of the CME matrix.
The initial conditions for the problems in the three

numerical tests were chosen so that they are biologically
relevant. Specifically, the initial state in Test 3 is from the
original problem.�36� The initial condition for Test 1 fol-
lows the same structure as in Ref. [24], and the initial val-
ues for Test 2 is the same as in Ref. [32], except the lower
value for S, which is dictated by storage requirements.
We also performed tests for the same biological problems
with slightly different initial conditions, and found the
results to be qualitatively similar to those presented here.
This means that the algorithms are sensitive to a similar
extent to the initial conditions.
BDF-GM-LU0 and BDF-LU0 finished in all three

numerical tests. They escape the storage requirement of
the complete LU decomposition by applying a fast and
cheap incomplete LU decomposition instead where, in the
course of the decomposition, the elements not in the spar-
sity pattern of A�t� are discarded. The price for the low
storage requirement and cheap computation time cost is
that the incomplete LU decomposition might lose valuable
information during the integration time, evidenced by the
large error of the marginal distributions. Because of this,
the probability distributions computed by BDF-GM-LU0
and BDF-LU0 are wrong in all three tests. Tables I–III
confirm that their results always have the largest errors.

0 10 20 30 40 50

M

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
ro

ba
bi

lit
y

0 20 40 60 80

D

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20

RNA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2

DNA

0

0.2

0.4

0.6

0.8

1

0 1 2
0

0.2

0.4

0.6

0.8

1

0 1 2
0

0.2

0.4

0.6

0.8

1

DNA.D DNA.2D

FRM
Runge-Kutta
MAGNUS-SSA-1
MAGNUS-SSA-2
MAGNUS-SSA-3
MAGNUS-SSA-4

Fig. 5. Probability distributions from the transcriptional regulatory model (Test 3).

For instance, in Test 1, which is the smallest problem,
they fail to follow the shape of the marginal probability
distributions. This is in contrast to results in Ref. [37],
in which BDF-GM-LU0 and BDF-LU0 performed better
than their complete LU variants across a range of ODE
problems. This is because for those problems, the matrices
are sparse with small norms, so the elements discarded by
the incomplete LU decomposition are indeed insignificant.
Performing the complete LU decomposition in that case
would be time-consuming without substantially improved
accuracy.
Adams-PECE did not finish in Test 1, because the

maximum number of steps allowed in the program was
exceeded before reaching tf . In Test 2, it produced cor-
rect distributions in competitive time, only surpassed by
Runge-Kutta (RK). In Test 3 Adams-PECE did not finish
because it detected that the problem is stiff.
Quite surprisingly, RK was the only solver besides the

MAGNUS-SSA algorithms to complete for all three numer-
ical tests. This is interesting, given that among the tra-
ditional ODE solvers in this comparison, it is the only
explicit algorithm. Even more, RK finished first in Tests 1
and 2, because its explicit formula requires less computa-
tion time. RK produced the correct probability distribution
in Test 3, while the other traditional ODE solvers failed
because the problem is stiff. Note that in our previous
report,�38� all ODE solvers were tested for the transcrip-
tional regulatory model with the same set-up as Test 3, but
with initial values

M= 0� D= 2�

DNA= 1� DNA.D= 0�

DNA.2D= 0� RNA= 0

final time tf = 600 s, FSP bounds

0≤M ≤ 46� 0 ≤ D≤ 59�

0≤ DNA ≤ 1� 0 ≤ DNA.D≤ 1�

0 ≤ DNA.2D≤ 1� 0 ≤ RNA ≤ 12

and n = 293280� nz= 2091993. RK did not finish in that
test, possibly because of the longer end time.
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Fig. 6. Error estimates in the MAGNUS-SSA variants from the transcriptional regulatory model (Test 3).

All MAGNUS-SSA algorithms produced exact proba-
bility distributions in all numerical tests, proving that
Magnus-based integration methods are suitable for solv-
ing CME problems with time-dependent rates. On the
other hand, MAGNUS-SSA is time-consuming, because
there is at least one exponential-matrix-vector product to
be computed every time step. Therefore all MAGNUS-
SSA implementations were exceeded by RK in Test 1, and
RK and Adams-PECE in Test 2. However, all MAGNUS-
SSA implementations except forMAGNUS-SSA-4 outpaced
RK in Test 3, because the Magnus-based methods have
been known to excel in solving highly oscillatory or stiff
problems.�13�

We now compare the different MAGNUS-SSA algo-
rithms. They all produced good results in the tests, and it
is not surprising that MAGNUS-SSA-1 always finished last.
It requires two Expokit runs per time step, which is time-
consuming, and the error estimate is of order 2, implying
the time steps are taken conservatively. MAGNUS-SSA-2
employs our cheap approximation of the local error esti-
mate used in MAGNUS-SSA-1, and it is faster in all numer-
ical tests, even more than halving the time cost in Test 3.
Figures 2, 4 and 6 reveal that the error estimates in
MAGNUS-SSA-2 follow closely those in MAGNUS-SSA-1,
explaining why its solutions are very dependable.
MAGNUS-SSA-3 applies the common halved time-step

scheme. Because both the normal Magnus solution and its
‘corrector’ are of the 4th order, so is its error. This, in
combination with the fact that its error estimates tend to be
lower than those in MAGNUS-SSA-1 and MAGNUS-SSA-2,
result in more relaxed time steps and ultimately small time
costs, even though there are three Expokit runs for every
time step.
MAGNUS-SSA-4 is the fastest among the Magnus

implementations in all tests, and there are several reasons
for this. Firstly, and most importantly, its error estimate
is a priori, allowing the algorithm to check the time step
before committing to the time-demanding task of find-
ing the next probability distribution. Moreover, there is
only one Expokit run for each time step. It is possible
that for the problems where A�t� changes dramatically,
MAGNUS-SSA-4 might fail, because its error estimate
does not take the quadrature error into account. However,

many biological problems with time-dependent rates are
modeled using continuous functions for the reaction rates,
in which case MAGNUS-SSA-4 is a good candidate as an
ODE solver.

8. CONCLUSIONS
In this paper, we developed the framework of Magnus-
SSA, which allows the FSP state space to be adap-
tively changed during the Magnus integration time. This
decreases the time costs of the Magnus-based meth-
ods. We also implemented two local error approximating
schemes from MacNamara and Burrage,�24� and Iserles,
Marthinsen and Nørsett,�12� as well as two other error esti-
mation techniques. The resulting Magnus-SSA algorithms
were then tested against Adams-PECE, Runge-Kutta, and
BDF, across several problems in biology where the CME
arises. The numerical results show that Magnus-based
methods are serious candidates for solving stiff CME prob-
lems with time-dependent rates.
It is important to point out that Adams-PECE, Runge-

Kutta, and BDF are ‘all-purpose’ ODE solvers, where the
Magnus-based methods in consideration here are only suit-
able for solving the linear ODE in the form of (2). How-
ever, such problems arise in many biological fields and
even in other sciences where Markovian reaction networks
occur.�1� Numerical Magnus-based methods, therefore, can
be an important choice for solving these problems. On the
other hand, there is already interest in expanding the
Magnus method to solving non-autonomous linear ODE
problems.�14� This may be of interest to the biology com-
munity, where such problems can emerge.�39�
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