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Abstract

Krylov subspace methods have proved quite effective at approximating the action of a large sparse matrix exponential on a
vector. Their numerical robustness and matrix-free nature have enabled them to make inroads into a variety of applications. A case
in point is solving the chemical master equation (CME) in the context of modeling biochemical reactions in biological cells. This
is a challenging problem that gives rise to an extremely large matrix due to the curse of dimensionality. Inexact Krylov subspace
methods that build on truncation techniques have helped solve some CME models that were considered computationally out of
reach as recently as a few years ago. However, as models grow, truncating them means using an even smaller fraction of their
whole extent, thereby introducing more inexactness. But experimental evidence suggests an apparent success and the aim of this
study is to give theoretical insights into the reasons why. Essentially, we show that the truncation can be put in the framework
of inexact Krylov methods that relax matrix–vector products and compute them expediently by trading accuracy for speed. This
allows us to analyze both the residual (or defect) and the error of the resulting approximations to the matrix exponential from the
viewpoint of inexact Krylov methods.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Given a large sparse nonsymmetric matrix A ∈ Rn×n and vector p0 ∈ Rn , letting v = p0 and taking m ≪ n
Arnoldi steps with a starting vector v1 = v/∥v∥, where ∥ · ∥ means the 2-norm, we obtain an orthonormal basis
Vm = [v1, . . . , vm] ∈ Rn×m of the Krylov subspace Km(A, v) = span{v, Av, . . . , Am−1v}, and an upper Hessenberg
matrix Hm ∈ Rm×m that satisfy

AVm = Vm+1Hm = VmHm + hm+1,mvm+1eT
m, (1a)

Hm = VT
mAVm, (1b)
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where em = (0, . . . , 0, 1)T , and Hm ∈ R(m+1)×m is Hm augmented with hm+1,meT
m under its last row. The standard

Krylov approximation to the matrix exponential takes the form

exp(τA)v ≈ Vm exp(τHm)βe1, e1 = (1, 0, . . . , 0)T , β = ∥v∥. (2)

It is well-known that (1) is also the cornerstone for building very efficient Krylov subspace solution techniques
for other problems such as eigenvalue problems or linear systems. In the latter, there has been recent interest in
transitioning from exact to inexact (or relaxed) matrix–vector products in the Arnoldi process [3,4,15], either out of
necessity or deliberately, trading accuracy for speed. It is customary to model these inexact products as

Avk ≈ (A + Ek)vk, (3)

where Ek is some error matrix that varies at each invocation, and note that setting Ek = 0 recovers the exact evaluation.
To make the difference clear, we refer to the classical method as the exact Arnoldi and it is not meant to imply exact
arithmetic. The foremost implication of such a relaxation is that the classical Arnoldi relationship (1) does not hold
anymore, but Simoncini and Szyld [15] made the key observation that we end up with

(A + Em)Vm = VmHm + hm+1,mvm+1eT
m, Em =

m
k=1

EkvkvT
k , (4)

which is similar to (1), except that Vm , which still remains orthonormal, is now a basis of a Krylov subspace obtained
by a perturbed A. When we use the computed Vm and Hm from (4) in GMRES for instance, classical error bounds do
not apply anymore. However, from theoretical and experimental evidence (such as [14]), the method can withstand
cases where the norm of the perturbation Em grows quite large.

The analysis of Simoncini and Szyld [15] provided insights into inexact GMRES for solving a linear system
Ax = b, but it has so far remained unclear how inexactness affects the Krylov approximation (2). Since we now
have (4) instead of (1), we also lose classical error bounds on the matrix exponential (e.g., Gallopoulos and Saad [5],
Saad [11], Hochbruck and Lubich [9]). Thus our study fills a gap in the literature by looking at the error in the inexact
Krylov counterpart of (2). We additionally offer another related way of assessing the accuracy by investigating the
defect or residual [2] from the fact that (2) arises when solving a system of linear ODEs of the form

p′(t) = Ap, t ∈ [0, t f ]

p(0) = p0, initial condition.
(5)

It is worth recalling that, in the exact case, the effectiveness of approximating exp(A)v by projecting it onto
Km(A, v) hinges on the fact that all polynomials of A of degree ≤ m − 1 can be calculated exactly through Hm ,
or more precisely,

qm−1(A)v = Vmqm−1(Hm)βe1,

where qm−1 is any polynomial of degree ≤ m − 1. By the same reasoning as in the exact case (e.g.,
Saad [11, Lemma 3.1]), it can be shown from (4) that, for the same polynomial qm−1,

qm−1(A + Em)v = Vmqm−1(Hm)βe1.

The significance of all this is that the inexact Krylov subspace method for Km(A, v) with the relaxation matrices
Ek, k = 1, . . . , m, can be seen as the exact Krylov subspace method for Km(Ã, v) with

Ã = A + Em = A +

m
k=1

EkvkvT
k ,

which is another simple way to understand the method.
The rest of the paper is organized as follows: Section 2 gives some background on modeling biochemical reactions

and on the finite state projection (FSP) algorithm for solving the underlying chemical master equation (CME), which
was the challenging application that initially motivated the research presented here. Section 3 analyzes the residual
(or defect) of the inexact Krylov method both when the ODE problem is homogeneous or nonhomogeneous, with
two different approaches considered for the latter. Section 4 analyzes the error and includes a special treatment that
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exploits the structure of the matrix when it arises from stochastic processes such as that involved in the CME. Section 5
reports some numerical experiments. Section 6 finally wraps the presentation with some concluding remarks.

2. Inexact chemical master equation — a motivation

In a biological cell containing different molecular species undergoing various chemical reactions, the state is
a vector of integers counting the different species of molecules. Such a discrete formulation is prompted by key
regulatory molecules that exist in small numbers, making a continuous formulation (via concentrations) inappropriate.
The counter of a species goes up or down when a chemical reaction occurs, depending on whether the reaction
produces or consumes that species. Starting from a particular state, the cell will transition to different states as
reactions happen. The CME has the form (5) and depicts the evolution of the system’s probability distribution, which
characterizes the probability of finding the cell in a given state at a given time. The challenge here is that even with
simple biochemical models having 4 or 5 reaction channels and a relatively low count of each molecular species,
there can be millions of possible states, and the variety of models means that calculations cannot rely on generic
simplifications.

The finite state projection (FSP) algorithm of Munsky and Khammash [10] is a model reduction method to cope
with the huge size of the CME, and we outline it here because it vividly illustrates how inexactness comes into play.
With J = {1, . . . , k}, and k being the cardinality of J , let

A =


AJ ∗

∗ ∗


∈ Rn×n,

i.e., AJ is a k × k submatrix of the true operator A. The FSP algorithm takes

p(t f ) = exp(t f A)p0 ≈


exp(t f AJ ) 0

0 0

 
pJ (0)

0


. (6)

Note that p0 = p(0) is also truncated according to J . Munsky and Khammash [10] assessed the loss of the probability
mass and gave a theoretical justification of the merit of this approach from a probabilistic point of view. Our study
recasts the analysis in the framework of inexact methods.

With J now an arbitrary subset of {1, . . . , n}, and the corresponding submatrix AJ padded with zeros as necessary,
the ‘truncation’ can be formalized as

A = AJ + RJ ,

where RJ is the error matrix from the truncation. Then (6) is in turn further approximated by an inexact Krylov method
for the matrix exponential, which we saw previously means that the Arnoldi process for approximating the solution
uses inexact (or relaxed) matrix–vector products of the form

AJ v ≈ (AJ + SJ )v,

where SJ models some error in the product. Combining with the truncation, we get

Av ≈ (A − RJ + SJ )v,

so that E = −RJ +SJ captures both error terms. In particular, if SJ = 0, only the truncation error is in effect, whereas
if RJ = 0, there will only be the error from the relaxed matrix–vector product. From now on, our theoretical analysis
will simply assume that the true matrix A interacts through the inexact evaluation Avk ≈ (A + Ek)vk without regard
to the real source of the error.

3. Bounds on the residual

Given the differential equation (5), consider an approximation pm(t) ≈ p(t), then in the terminology of ODEs the
‘residual’ or ‘defect’ is defined as

rm(t) = p′
m(t) − Apm(t). (7)
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This definition reminds what happens when approximating the solution to a linear system Ax = b. Take GMRES,

which uses the approximation xm = x0 + Vmym, where x0 is an initial guess, ym = H
Ď
mβe1, with Vm and Hm arising

from the Arnoldi process for Km(A, r0), and denoting r0 = b − Ax0, β = ∥r0∥, and H
Ď
m the pseudo-inverse of Hm .

Applying (4), the inexact GMRES method ends up with (the norm of) the computed residual

r̃m = r0 − Vm+1Hmym, (8)

while the true residual satisfies

rm = b − A(x0 + Vmym) = r̃m + EmVmym . (9)

From (8) and (9), and the fact that EmVm = [E1v1, . . . , Emvm] because Vm is orthonormal, there is an unknown
residual gap that satisfies

δm = ∥rm − r̃m∥ = ∥EmVmym∥ = ∥[E1v1, . . . , Emvm]ym∥. (10)

The inexact solver still reports ∥r̃m∥ as the estimate of the residual, but the residual gap (10) is not obvious, and so the
reliability of the final solution is not guaranteed. Simoncini and Szyld [15] obtained the bound (see also [6,14]):

δm ≤

m
k=1

|η
(m)
k | · ∥Ekvk∥ ≤

m
k=1

|η
(m)
k | · ∥Ek∥, ym = H

Ď
mβe1 = (η

(m)
1 , η

(m)
2 , . . . , η(m)

m )T .

Returning to the differential equation (5) where the residual of an approximation is defined by (7), and using (2)
based on the exact Arnoldi process, we get the Krylov approximation pm(τ ) = Vm exp(τHm)βe1 that leads to

p′
m(τ ) − Apm(τ ) = p′

m(τ ) − AVm exp(τHm)βe1

= Vm exp(τHm)Hmβe1 − [VmHm + hm+1,mvm+1eT
m] exp(τHm)βe1

= −βhm+1,m


eT

m exp(τHm)e1


vm+1.

Expokit [12] uses variants of this estimate (with some scaling) to monitor the accuracy. We define the computed
residual as

r̃m(τ ) = −βhm+1,m


eT

m exp(τHm)e1


vm+1,

because this would still be the economical quantity (or a related one from it) used to estimate the true residual. As we
shall see in the following section, with the inexact Arnoldi process (4), the true residual in the ODE problem becomes

rm(τ ) = r̃m(τ ) + EmVm exp(τHm)βe1,

which is reminiscent of (9), but with ym(τ ) = exp(τHm)βe1 instead of the least squares solution ym = H
Ď
mβe1.

Simoncini and Szyld [15] refined their bounds by exploiting properties satisfied by the components of ym through
Givens rotations in the case of GMRES. Our analysis will derive bounds without assuming those properties since
Givens rotations are not involved in the case of the matrix exponential.

3.1. Homogeneous case

The Krylov technique for solving (5) is typically done by using the integration scheme
p(0) = p0
p(tk+1) = exp(τkA)p(tk),

(11)

with some strategy for choosing the stepsizes τk = tk+1 − tk . The problem remains how to effectively approximate
exp(τA)v given τ and v.
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Now, using (2) based on the inexact Arnoldi process (4), the true residual of the resulting Krylov approximation
pm(τ ) = Vm exp(τHm)βe1 satisfies

rm = p′
m − Apm

= (Vm exp(τHm)βe1)
′
− AVm exp(τHm)βe1

= Vm exp(τHm)Hmβe1 − (VmHm + hm+1,mvm+1eT
m − EmVm) exp(τHm)βe1

= −hm+1,m(eT
m exp(τHm)βe1)vm+1 + EmVm exp(τHm)βe1

= r̃m + EmVm exp(τHm)βe1,

where r̃m is the computed residual defined earlier. The dependency on the time τ will not be made explicit unless there
is a risk of ambiguities. The quantity

δres
m = ∥rm − r̃m∥ = ∥EmVm exp(τHm)βe1∥ (12)

is the residual gap between rm and r̃m . It depends on the relaxation matrices Ek and therefore cannot be computed in
a straightforward manner. From the derivation above, we can bound the norm of the true residual as

∥rm∥ ≤ ∥r̃m∥ + δres
m . (13)

When all matrix–vector products are exact, i.e., all Ek = 0, then Em = 0 and δres
m = 0 as expected. More generally

with ym = exp(τHm)βe1, the residual gap can be written as

δres
m = ∥EmVmym∥ = ∥[E1v1, . . . , Emvm]ym∥,

and similarly to [15, Prop. 4.1], if we write ym = (η
(m)
1 , . . . , η

(m)
m )T , the following upper bound on the residual gap

holds:

δres
m ≤

m
k=1

|η
(m)
k | · ∥Ek∥, (14)

and furthermore we have the following result:

Proposition 3.1. Given ϵres > 0, if ∥Ek∥ ≤
ϵres

mβ∥ exp(τHm )∥
, k = 1, . . . , m, then we have

δres
m ≤ ϵres (15)

and therefore ∥rm∥ ≤ ∥r̃m∥ + ϵres.

Proof. We have |η
(m)
k | ≤ ∥ym∥ = ∥ exp(τHm)βe1∥ ≤ β∥ exp(τHm)∥, and so combining the condition on ∥Ek∥ with

the inequality (14) gives (15). The bound on ∥rm∥ then follows naturally from the relation ∥rm∥ ≤ ∥r̃m∥ + δres
m . �

Remark 3.2. As Giraud et al. [6] pointed out in the context of inexact GMRES, Proposition 3.1 does not allow us
to anticipate the relaxation matrices Ek in advance because of the dependence on Hm . It can however be used in a
postmortem manner to check if the error condition is satisfied.

3.2. Nonhomogeneous case

3.2.1. Bounding the residual gap via the ϕ function
It is well known (see, e.g., Expokit [12]) that the numerical solution to the system of nonhomogeneous ODEs

p′(t) = Ap(t) + b
p(0) = p0

(16)

with constant A ∈ Rn×n and b ∈ Rn , can be found using the integration scheme
p(0) = p0
p(tk+1) = τkϕ(τkA)[Ap(tk) + b] + p(tk)

(17)
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where ϕ(τA) =


∞

i=0
(τA)i

(i+1)!
[8, Chap. 2.1, Chap. 10.7]. This integration scheme circumvents using the representation

of the analytical solution of (16), p(t) = exp(tA)p0 + tϕ(tA)b, which would need both Km(A, p0) and Km(A, b)

instead of only one Krylov subspace as implied in (17). Using this scheme, we can derive a result similar to
Proposition 3.1, but this can be avoided by the augmented approach shown below.

3.2.2. Bounding the residual gap via an augmented matrix exponential
An indirect way to solve (16) takes root in the analytical solution p(t) = exp(tA)p0 + tϕ(tA)b, and has proved

convenient in other circumstances such as [1,13]. Define the augmented matrix

A+
=


A b
0 0


∈ R(n+1)×(n+1),

then we have

exp(tA+) =


exp(tA) tϕ(tA)b

0 1


,

so that the solution can be fetched as p(t) =

exp(tA+)p+

0


1:n with p+

0 =


p0
1


.

The problem now amounts to getting exp(tA+)p+

0 . Transforming the problem back to the form exp(tA+)p+

0 not
only inherits the analysis done in the homogeneous case in an elegant way, but also enables seamless code re-use.
Furthermore, the inexactness in the matrix–vector product with A+ is only triggered from A through

A+
+ E+

k =


A + Ek b

0 0


,

and so results can nicely be recast in terms of Ek . For this reason, we will not dwell any further on the nonhomogeneous
case in the rest of our presentation.

4. Bounds on the error

4.1. General upper bound on the error

As pointed out in the introduction, the inexact method for Km(A, v) with the perturbation matrices Ek, k =

1, . . . , m, can be seen as the exact method for Km(Ã, v) with

Ã = A + Em = A +

m
k=1

EkvkvT
k .

Therefore if we define

ϵ̃m = ∥ exp(τ Ã)v − Vm exp(τHm)βe1∥

= ∥ exp(τ (A + Em))v − Vm exp(τHm)βe1∥,

then bounds on ϵ̃m have been given in the literature of exact Krylov methods [5,11,9]. However, our main focus is not
so much on the bounds on ϵ̃m , but on the true error

ϵm = ∥ exp(τA)v − Vm exp(τHm)βe1∥.

The relationship between ϵm and ϵ̃m is straightforward from the triangle inequality

ϵm ≤ ∥ exp(τA)v − exp(τ Ã)v∥ + ∥ exp(τ Ã)v − Vm exp(τHm)βe1∥ = ϵ̃m + δerr
m ,

where we define the error gap

δerr
m = ∥ exp(τA)v − exp(τ Ã)v∥. (18)

With upper bounds on ϵ̃m ready in hand, it remains to get good bounds on δerr
m , which turns out to be a matrix

perturbation analysis that we discuss next.
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4.2. Bounding the error gap

In [8, Chap. 10.2], Higham obtained

exp(τ Ã) = exp(τA) +

 τ

0
exp((τ − s)A)Em exp(sA)ds + O


∥τEm∥

2


. (19)

Post-multiplying each side by v, we get

exp(τ Ã)v = exp(τA)v +

 τ

0
exp((τ − s)A)Em exp(sA)vds + O


∥τEm∥

2


.

Hence

δerr
m ≤

 τ

0
∥ exp((τ − s)A)∥∥Em∥∥ exp(sA)∥∥v∥ds + O(∥τEm∥

2),

which leads directly to the following statement.

Theorem 4.1. For any arbitrary A, v and Ã = A + Em from the inexact Krylov subspace method, we have

δerr
m = ∥ exp(τA)v − exp(τ Ã)v∥ ≤ βh2

A∥τEm∥ + O(∥τEm∥
2),

where β = ∥v∥ and hA = maxs∈[0,τ ] ∥ exp(sA)∥ is the so-called ‘hump’ on [0, τ ].

When A originates from a Markov chain as is the case in the CME, (i.e., with nonnegative off-diagonal elements,
negative diagonal elements and zero column sums) it is known that ∥ exp(sA)∥1 = 1, ∀s ≥ 0 (see for example
[8, section 2.3]). We can then draw from (19) that

∥ exp(τA)v − exp(τ Ã)v∥1 ≤

 τ

0
∥ exp((τ − s)A)∥1∥Em∥1∥ exp(sA)∥1∥v∥1ds + O(∥τEm∥

2
1).

and using in addition the fact that a probability vector has ∥v∥1 = 1, we get the following simplified result.

Theorem 4.2. Let A be the transition rate matrix of a Markov chain, then given a probability vector v and the
perturbed Ã = A + Em from the inexact Krylov subspace method, we have

∥ exp(τA)v − exp(τ Ã)v∥1 ≤ ∥τEm∥1 + O(∥τEm∥
2
1).

4.3. Series expansion of the error

In [11], Saad derived the following series expansion of the error produced by the exact Krylov subspace method

exp(τA)v − Vm exp(τHm)βe1 = τhm+1,m

∞
k=1

eT
mϕk(τHm)βe1(τA)k−1vm+1, (20)

of which the first term in the series was argued to be a good estimate of the error when the stepsize τ is small enough.
Here, the functions ϕk are defined as

ϕk(x) =

∞
i=0

x i

(i + k)!
, ϕk(0) =

1
k!

,

which implies that

0 ≤ ϕk(x) ≤
ϕk−1(x)

k
≤ · · · ≤

ex

k!
, if x ≥ 0.

In the context of the inexact Krylov subspace method, we can use (4) and substitute A for Ã = A + Em in (20),
but that will bring up the unwieldy issue of the error gap again. Instead, we generalize the expansion in the following
statement that reveals how the terms involving Em break out in a strikingly neat way.
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Theorem 4.3. The (true) error in the inexact Krylov subspace method for the matrix exponential has the series
expansion

exp(τA)v − Vm exp(τHm)βe1

=

∞
k=1

(τA)k−1

τhm+1,m


eT

mϕk(τHm)βe1


vm+1 − τEmVmϕk(τHm)βe1


. (21)

Proof. As in the proof of [11, Theorem 5.1], define the error in approximating ϕk(A)v by projecting it onto Vm as
sk

m = ϕk(A)v − Vmϕk(Hm)βe1.

From the definition of ϕk and the fact that ϕk(0)v = Vmϕk(0)βe1, we directly have

ϕk(A)v = Aϕk+1(A)v + ϕk(0)v

= A[Vmϕk+1(Hm)βe1 + sk+1
m ] + ϕk(0)v

= Vm[ϕk(0)βe1 + Hmϕk+1(Hm)βe1] + hm+1,mvm+1eT
mϕk+1(Hm)βe1

− EmVmϕk+1(Hm)βe1 + Ask+1
m

= Vmϕk(Hm)βe1 + hm+1,mvm+1eT
mϕk+1(Hm)βe1 − EmVmϕk+1(Hm)βe1 + Ask+1

m ,

resulting in another expression for sk
m through a recurrence

sk
m = hm+1,m


eT

mϕk+1(Hm)βe1


vm+1 − EmVmϕk+1(Hm)βe1 + Ask+1

m .

Using these expressions of the error terms gives

exp(A)v − Vm exp(Hm)βe1 = s0
m

= hm+1,m


eT

mϕ1(Hm)βe1


vm+1 − EmVmϕ1(Hm)βe1 + As1

m = · · ·

= hm+1,m

j
k=1


eT

mϕk(Hm)βe1


Ak−1vm+1 −

j
k=1

Ak−1EmVmϕk(Hm)βe1 + A j s j
m,

in which

∥A j s j
m∥ ≤ ∥A∥

j
∥s j

m∥ ≤ ∥A∥
jβ


ϕ j (∥A∥) + ϕ j (∥Hm∥)


≤ β


e∥A∥

+ e∥Hm∥


∥A∥

j

j !

converges to 0 as j → ∞. Taking this into account in the sums above, we get

exp(A)v − Vm exp(Hm)βe1 =

∞
k=1

Ak−1
[hm+1,m


eT

mϕk(Hm)βe1


vm+1 − EmVmϕk(Hm)βe1].

Finally, if we rescale the inexact Arnoldi relation in (4) with the stepsize τ , we get (21). �

4.4. Exactness in the case of truncated approximations

The analysis so far has not made any assumption on the structure of A, v or Ek . In this section, we show a counter-
intuitive result that, when Ek arises from a truncated approximation of a special form of the matrix A, the inexact
scheme can be exact.

Consider a banded matrix, and assume that v = e1 = (1, 0, . . . , 0)T . The multiplication of A with v will therefore
not involve the contribution of elements located in the trailing submatrices of A. Generalizing this observation, we get
the following result that arises frequently in the CME discussed in Section 2 and is therefore of wide interest.

Theorem 4.4. Let l ≥ 0, k − l ≥ 2, assume that

A =


Ak B
C D


∈ Rn×n,
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where

Ak ∈ Rk×k, (Ak)i j = 0 if i > j + l,

and

C ∈ R(n−k)×k, (C)i j = 0 if j ≤ k − l − 1.

That is, A visually has the form:

Also assume that v = e1 and the relaxation matrices are identical,

E =


0 −B

−C −D


∈ Rn×n .

Then if m ≤ M = max{ j : ( j − 1)l + 1 ≤ k − l − 1}, where m is the dimension of the basis built by the inexact
Arnoldi algorithm based on matrix–vector products with A + E, we have

Em = 0,

so that

exp(τA) = exp(τ Ã),

and

δerr
m = 0.

Proof. Observe first that, because of the special forms of A and v, the v j produced by the Arnoldi process is such that

(v j )i = 0, i > ( j − 1)l + 1, 1 ≤ j ≤ M.

This means that, up to j = M , the exact Arnoldi process (where multiplications are performed with A) and the inexact
Arnoldi process (where they are instead performed with A + E) coincide, due to the fact that the multiplications only
depend on the first k − l − 1 columns of A and A + E, which are the same.

Because the first k − l − 1 columns of E are zero, and only the first ( j − 1)l + 1 ≤ k − l − 1 elements of the vectors
v j are nonzero for 1 ≤ j ≤ m ≤ M , we have Ev j = 0, and therefore

Em =

m
j=1

Ev j vT
j = 0.

Hence A = Ã and naturally δerr
m = ∥ exp(τA)v − exp(τ Ã)v∥ = 0. �

Remark 4.5. The analysis in Theorem 4.4 will explain results apparently intriguing in the experiments, as the reader
will soon discover in the following section. Note however that it only works for v = e1. Since the step-by-step
integration scheme (11) is typically used, v will not remain e1 past the first step, in which case the analysis of δerr

m done
in the previous section takes effect.

Remark 4.6. Even though this theorem shows that we have Em = 0 and exp(τA) = exp(τ Ã), ∀τ , with a Krylov
subspace of small dimension, this does not mean that the inexact Krylov approximation has no error. As shown in
Theorem 4.3, even if Em = 0, the expansion collapses to (20), which is generally not zero.
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Fig. 1. Example 1: when the principal 100 × 100 submatrix becomes contained in the truncated matrix, the bound condition of Proposition 3.1 is
satisfied, resulting in δres

m within the tolerance.

5. Numerical examples

We illustrate some of the theoretical results using three examples. The first two examples illustrate how
Proposition 3.1 can be applied, by first showing how the relaxation scheme works according to the proposition, and
secondly how the scheme fails when the condition of the proposition is not satisfied. The third example is a special one
to demonstrate the peculiar behavior hinted in Remark 4.5: the scheme still works well even though the (sufficient)
condition of Proposition 3.1 is not satisfied due to the reason given in Theorem 4.4. The examples were implemented
in MATLAB.

We recall the following quantities that were given in the text to assess the inexact method:

true residual = ∥rm∥ = ∥VmHmym − AVmym∥

computed residual = ∥r̃m∥ = |hm+1,meT
mym |

residual gap = δres
m = ∥rm − r̃m∥ = ∥EmVmym∥

true error = ϵm = ∥ exp(τA)v − Vmym∥,

where ym = exp(τHm)βe1, with a given τ , and with Hm and Vm constructed by the inexact Krylov method using an
initial given vector v = p0 with β = ∥v∥.

5.1. Example 1 — illustration of the residual gap when Proposition 3.1 is satisfied

We take a 1000 × 1000 matrix, where the principal 100 × 100 submatrix is uniformly distributed in [0, 1], and
entries outside this submatrix are uniformly distributed in [0, 10−6

]. The initial vector is v = (10−3, . . . , 10−3)T . We
take the time point τ = 10−3, and tolerance on the residual gap ϵres

= 10−3. The Krylov subspace is chosen to be of
dimension m = 15.

For the inexact scheme, we define Ak to be a 1000 × 1000 matrix containing the principal k × k submatrix of A
and 0 outside. Inexact multiplications with A are then performed with Ak instead. Observations are shown in Fig. 1.
Since the key entries of A are in the principal 100 × 100 submatrix, it is clear that if k < 100, then Ak will leave out
vital entries and inflate the error matrix E = A − Ak , which in turn will cause the residual gap to be large. However,
if k ≥ 100, then ∥E∥ ≤

ϵres

mβ∥ exp(τHm )∥
, which is the bound condition in Proposition 3.1, and therefore δres

m ≤ ϵres as
guaranteed there. Fig. 1 illustrates this with the truncation index 90 ≤ k ≤ 110.

5.2. Example 2 — illustration of the residual gap when Proposition 3.1 is not satisfied

We now consider another 1000 × 1000 matrix, where the main diagonal is uniformly distributed in [0, 1], and
the off-diagonal entries are uniformly distributed in [0, 10−6

]. As in the first example, we keep v = (10−3, . . . ,
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Fig. 2. Example 2: The bound condition of Proposition 3.1 is never satisfied, and δres
m is greater than the tolerance.

Table 1
Michaelis–Menten reactions and propensities.

Reaction Propensity Rate constant (s−1)

1. E + S
κ1

−→ ES α1 = κ1 [E] [S] κ1 = 1.0

2. ES
κ2

−→ E + S α2 = κ2 [ES] κ2 = 1.0

3. ES
κ3

−→ E + P α3 = κ3 [ES] κ3 = 0.1

10−3)T , τ = 10−3, ϵres
= 10−3, and m = 15. The inexact setup is also the same, with inexact matrix–vector products

against A performed using Ak , where Ak contains the k × k principal submatrix of A and zeros elsewhere.
As Fig. 2 shows, in this example, the residual gap δres

m is consistently above the tolerance on the residual gap ϵres

even when k is almost the size of A. The reason for this is that since the diagonal elements are significant to be omitted,
truncating even only one or two of them would make ∥E∥ large and not satisfy the bound condition of Proposition 3.1.

The conclusion to draw from these two examples is that when inexactness is achieved in a reasonable way, the
inexact Krylov method works well. Depending on the particular problem at hand, one can decide how to relax the
matrix–vector multiplications to satisfy Proposition 3.1, in which case the residual gap can be controlled by ϵres,
ensuring that the computed residual ∥r̃m∥ serves as a reliable approximation of the true residual ∥rm∥.

5.3. Example 3 — illustration of the error and residuals when Theorem 4.4 is satisfied

We consider the CME arising from the Michaelis–Menten enzyme kinetics, which is a well known system
of biochemical reactions in cell biology. There are four species: substrates (S), enzymes (E), enzyme–substrate
complexes (ES) and products (P), interacting according to the three chemical reactions listed in Table 1, and we
took reaction rates as in [7]. The state vector is x = ([P], [E], [S], [ES])T , where [X] is the current number of copies
of species X. If we start with x1 = (0, 50, 50, 0)T , i.e., a maximum of 50 substrates, the resulting matrix A of the
underlying CME is of dimension n = 1,326. We use MATLAB’s expm command to check for correctness. Fig. 3
shows the sparsity pattern of A.

Since we know that the system starts in state x1, the initial probability vector is p0 = e1, and in the spirit of (6), we
compute the approximation

exp(τA)p0 ≈ exp(τAJ )p0,

where AJ is a padded truncation of A. We simply take a principal submatrix instead of the more general scheme where
J can be an arbitrary subset of {1, . . . , n}. There is no loss of generality because it can be assumed that there has been
a reordering PT AP where P is an appropriate permutation matrix. Our aim is to test the theory developed here and
not really to craft efficient implementation details with elaborate sparse data structures that are best communicated
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Fig. 3. Sparsity pattern of the matrix A from the CME of the Michaelis–Menten enzyme kinetics in Example 3.

Fig. 4. Example 3. (Left) the true error (on the left y-axis), and the true residual and residual gap (on the right y-axis); (Right) ∥E∥ and ∥Em∥;
computed as |J | increases from 230 to 280; v = e1, τ = 10−2, and m = 30.

elsewhere. We vary |J |, the cardinality of J that determines the size of the truncation from 230 to 280, so that |J |

ranges from about 17% to 21% of n in this example. We take v = e1, τ = 10−2, and m = 30.
Fig. 4 shows the results. We see on the right plot a decrease of ∥Em∥ as the truncation size |J | increases. This

example has the particularity of illustrating the phenomenon described in Section 4.4, where Em becomes a zero
matrix for a big enough truncation size |J |, even though |J | is still only about 20% of n. Because of this phenomenon,
the residual gap becomes 0, as the left plot shows. These results agree with the theory presented here. Note also on
the left plot how the stair functions change in unison, illustrating the connection between the residuals and the error.

6. Conclusion

This work has analyzed inexact Krylov methods for approximating the action of the matrix exponential and
provided insights into why they can be successful. We obtained results that in hindsight connect well with previous
results, but it is worth recalling that it was unclear at the beginning exactly how such inexact methods related to
previous works. The rigorous treatment presented here made the connection clear and established the details. This
therefore fills a gap in the literature. We also brought into focus a particularly attractive aspect of inexact methods:
they set a framework that encompasses model reduction methods in a generic way. We gave the important application
of solving the chemical master equation (CME) as an example to motivate this viewpoint, with truncation methods
such as the finite state projection (FSP) method that fit naturally in the framework. The study included numerical
experiments to illustrate the theory.
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