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1.  Introduction

One of the important goals of systems biology is to 
understand the complex and stochastic dynamics of 
gene regulation. A challenge toward this goal is that 
there are usually many unknown reaction rates in the 
involved mathematical models.

Here we use a data-driven maximum likelihood 
approach [1–7] to search for and validate unknown 
parameters so that the distributions reported in the 
experimental data can be recreated in the models.

We apply this approach to synthetic data gener-
ated from the negative feedback model in Min Wu 
et al [8], where an inhibitory gene network was con-
structed using two synthetic promoters [9]. Their lab 
experiment involved TetR and LacI (figure 1), which 
are repressors that inhibit the expression of each other 

by binding to their corresponding operator sites, TetR 
operator (Otet) and LacI operator (Olac), placed in 
engineered GAL1 promoters. Anhydrotetracycline 
(ATc) was used to inhibit TetR. The abundance of each 
protein was recorded by flow cytometry with yeast-
enhanced green fluorescent protein (yEGFP) and 
mCherry red fluorescent protein.

A mathematical model consisting of a set of two 
ordinary differential equations (ODEs) was proposed 
to explain the interaction of the two proteins involved 
[8, 9]. Experiments in [8] showed bimodality that 
is disruptive to the ODE model. This is because the 
dynamics of cellular processes with low copy numbers 
of molecules can be noisy events [10–12] and so the 
deterministic ODE formulation is not always ideal. 
This is supported by real time measurements of RNAs 
and proteins using fluoresent proteins made possible 
by recent advances in bio-imaging [13–17]. Because of 
this, stochastic models have arisen as a natural mode-
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Abstract
Monte Carlo methods such as the stochastic simulation algorithm (SSA) have traditionally been 
employed in gene regulation problems. However, there has been increasing interest to directly 
obtain the probability distribution of the molecules involved by solving the chemical master 
equation (CME). This requires addressing the curse of dimensionality that is inherent in most gene 
regulation problems. The finite state projection (FSP) seeks to address the challenge and there have 
been variants that further reduce the size of the projection or that accelerate the resulting matrix 
exponential. The Krylov-FSP-SSA variant has proved numerically efficient by combining, on one 
hand, the SSA to adaptively drive the FSP, and on the other hand, adaptive Krylov techniques to 
evaluate the matrix exponential. Here we apply this Krylov-FSP-SSA to a mutual inhibitory gene 
network synthetically engineered in Saccharomyces cerevisiae, in which bimodality arises. We show 
numerically that the approach can efficiently approximate the transient probability distribution, 
and this has important implications for parameter fitting, where the CME has to be solved for many 
different parameter sets. The fitting scheme amounts to an optimization problem of finding the 
parameter set so that the transient probability distributions fit the observations with maximum 
likelihood. We compare five optimization schemes for this difficult problem, thereby providing 
further insights into this approach of parameter estimation that is often applied to models in systems 
biology where there is a need to calibrate free parameters.
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ling choice in many cases in systems biology [3, 18, 19].  
The problem of integrating stochastic models with 
single-cell data is, therefore, of relevance to the systems 
biology community [20]. But in order to use either 
deterministic or stochastic biological models for anal-
ysis or for designing future lab experiments with con-
fidence, unknown parameters need to be found so that 
the models can capture the qualitative and quantitative 
features of the distributions found in the data [21, 22].

Parameter fitting in stochastic models is harder 
[2–4], although it can offer important insights, par
ticularly in systems biology where fitting of statistics 
or distributions can reveal some information about 
the underlying biological parameters or mechanisms. 
For example in [23], the probability distribution of 
nascent RNA was obtained by a stochastic model. It 
predicted hitherto unobserved discontinuities and 
periodic peaks in the distribution, which were then 
verified experimentally. Aslo in [24], parameter iden-
tification and cross-validation analyses were employed 
to choose, among many stochastic model hypotheses, 
the best model that fits the data without losing its pre-
dictive power because of overfitting. There have been 
other works that gained valuable insights from using 
stochastic models [11, 12]. Moreover, while rate con-
stants derived from deterministic parameter values 
have been used in many published CME models, the 
noise in the system can generate dynamics that are dif-
ferent from the predictions of deterministic models 
[2, 25]. Using deterministic parameters in a stochastic 
model can thus be deceptive. Hence, parameter infer-
ence in stochastic models is a relevant problem.

This has kindled the interest of several recent 
efforts aimed at facilitating the task [2, 22, 25, 26]. In 
this study, we use the concept of maximum likelihood 
[1–7], which has been regarded as a natural approach 
given the probabilistic nature of stochastic models 
[20]. The general principle of maximum likelihood 
parameter estimation [7, 23, 24] is to find the param
eters with which the mathematical model can repro-
duce the distributions in the experiments by using 

the likelihood of the data given a parameter set as 
the objective function for an optimization problem. 
Hence, fitting parameters in a stochastic model using 
maximum likelihood is essentially an optimization 
problem. What makes this problem challenging is 
that there can be confounded parameters, an identi-
fiability issue or multimodality of the likelihood sur-
face [20]. Although there have been comparisons of 
different derivative-free optimization schemes [27, 
28], there is no single optimization scheme that per-
forms best across all test problems [27]. Because of 
this, it is important to compare different optimization 
algorithms in the specific context of parameter fitting 
using the maximum likelihood. Here, we compare the 
performances of five optimization algorithms (three 
local and two global), representing some of the popu-
lar optimization techniques.

The rest of the paper is organized as follows: sec-
tion 2 forms the CME for the particular gene regu-
lation case under consideration. The likelihood of 
experimental observations given some parameter set 
is defined in section 3, as well as the parameter fitting 
scheme as an optimization process. The likelihood 
function is found by solving the CME, which is formi-
dable and further compounded with the many func-
tion evaluations required for the optimization prob-
lem. Section 4 outlines the Krylov-FSP-SSA algorithm, 
which is a powerful numerical component that we use 
for this purpose. We report some numerical tests in 
section 5, followed by a discussion and some conclud-
ing remarks in section 6.

2.  The chemical master equation (CME)

The application considered in this study is found in 
Min Wu et al [8, 9], where their mathematical model 
uses a set of two ODEs to characterize the interaction 
of the two proteins:

δ= + ⋅ − − ⋅
t

c p c c
d LacI

d
LacIrl e il rl,tet

[ ] ( ) [ ]� (1)

Figure 1.  Schematic diagram of the network used in Min Wu et al [8], copyright 2013 National Academy of Sciences.
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δ= + ⋅ − − ⋅
t

c p c c
d TetR

d
TetR .rt e it rt,lac

[ ] ( ) [ ]� (2)

We will detail the variables pe,tet, pe,lac, and constants 
cil, crl, cit, crt, δ when describing the CME. We will 
see that there is a total of 11 parameters, 6 of which 
are estimated from previous experiments and the 
remaining 5 are to be fitted.

To describe the stochastic alternative based on the 
CME, we define the state vector consisting of 2 proteins 
species: TetR and LacI, and represented as

=xx TetR , LacI T([ ] [ ])� (3)

where TetR[ ] and LacI[ ] can be any nonnegative integer 
counting the corresponding proteins. We model 
the interaction between the two species using the 
following reactions:

→∅
κ

LacI
1� (4)

→ ∅
κ

LacI
2� (5)

→∅
κ

TetR
3� (6)

∅
κ

TetR ,
4→� (7)

where κi is the reaction rate of reaction i. The formula 
for these rates can be found in [8] and are summarized 
below.

The quantity pe,tet is the probability of TX (the pro-
moter for LacI) to not be bound by TetR. Given the 
state vector at the moment, it can be defined as

= ⋅K k TetRI ATc [ ]� (8)

⎛
⎝
⎜

⎞
⎠
⎟=

+ ⋅
f

K

K ATc kI
I

I t

m

[ ]
� (9)

=
+ ⋅

p
k

k fTetRe
t
n

t
n

I
n,tet

t

t t([ ] )� (10)

where the parameter kATc, nonlinearity constant nt, 
and kt (defined to be the active [TetR] needed so that 
=p 50%e,tet ) are to be fitted. Note that from fitting 

the Hill coefficient of induction of ATc to the dose 
response curves, we have

⋅ =m n 11.5t� (11)

and therefore only need to find nt.

If TX is not bound by TetR (with probability pe,tet), 

the production rate of LacI is cil (
−min 1). However, if 

TetR does not bind to TX (with probability − p1 e,tet), the 

production rate of LacI is crl (
−min 1). Therefore we have:

κ = ⋅ + − ⋅p c p c1e il e rl1 ,tet ,tet( )� (12)

= + ⋅ −c p c c .rl e il rl,tet ( )� (13)

Similarly, pe,lac is defined as the probability of LX 
(the promoter for TetR) to not be bound by LacI, and 
is given as

=
+

p
k

k LacIe
l
n

l
n n,lac

l

l l[ ]� (14)

where the nonlinearity constant nl and parameter 
kl (active [LacI] needed so that =p 50%e,lac ) are 
unknown. We then have

κ = + ⋅ −c p c crt e it rt3 ,lac ( )� (15)

where crt (
−min 1) and cit (

−min 1) are TetR production 
rates when LX is repressed or induced, respectively.

Finally, because TetR and LacI are both very sta-
ble proteins, the decrease of intracellular abundance 
of these repressors is through cell division. Yeast cells 
grown in galactose media have doubling times of 
about 6 h [8, 9], corresponding to

κ κ δ= = ≈ −0.002 min .2 4
1 ( )� (16)

We can then define the propensities of the four 
reactions given the state of the system, which are the 
probabilities of them occurring during an infinitesi-
mal time interval +t t t, d[ ):

α = + ⋅ −c p c crl e il rl1 ,tet ( )� (17)

⎡
⎣⎢

⎤
⎦⎥

= +
⋅ −

+ ⋅ ⋅
⋅ + ⋅

c
k c c

k TetR
rl

t
n

il rl

t
n k

k ATc k

m n
TetR

TetR

t

t

t

t
ATc

ATc
( )

( )

[ ] [ ]
[ ] [ ]

� (18)

α δ= ⋅ LacI2 [ ]� (19)

α = + ⋅ −c p c crt e it rt3 ,lac ( )� (20)

= +
⋅ −

+
c

k c c

k LacI
rt

l
n

it rt

l
n n

l

l l

( )
[ ]� (21)

α δ= ⋅ TetR4 [ ]� (22)

where the parameters k k, tATc  and kl, and nonlinearity 
constants nt and nl are unknown and need to be fitted 
by the experimental data (note that since these are 
dimensionless quantities used to calculate pe,tet and 
pe,lac, they do not require any unit).

The other parameters are fixed and come from 
experiments with promoters [9]:

= −c 7.46 minrl
1 ( )� (23)

= −c 918 minil
1 ( )� (24)

= −c 13.06 minrt
1 ( )� (25)

= −c 717.38 minit
1 ( )� (26)

=m
n

11.5

t
� (27)

where the last equation comes from (11).
We are interested in the probability that the 

system is at any given state xx at time t, denoted as 
= =P t txx xx xxProb( ) { ( ) }. Knowing the number 
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of each species at =t 0 (from which P xx, 0( ) can be 
deduced), the CME [29] states that

∑

∑

ν να

α

= − −

−

=

=

P t

t
P t

P t

xx
xx xx

xx xx

d ,

d
,

,

k
k k k

k
k

1

4

1

4

( ) ( ) ( )

( ) ( )
� (28)

where the stoichiometric vector νk represents the 
change in species numbers if reaction k occurs.

Assuming that there are n possible states, ordered 
as = …XX xx xx, , n1{ }, then equation (28) can be rewrit-
ten as

= ⋅t tpp AA pp˙ ( ) ( )� (29)

where = …P t P tpp xx xx, , , ,n
T

1( ( ) ( ))  and the transition 
rate matrix R= ∈ ×aAA ij

n n[ ]  is defined as

( )    

( )  
 

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑

ν

α

α
=
− =

= +
=a

i jxx

xx xx xx

, if

, if

0, otherwise

.ij
k

k j

k j i j k

1

4

� (30)

The solution to (29) is the probability vector at the end 
point tf:

=t tpp AA ppexp 0f f( ) ( ) ( )� (31)

where the exponential matrix is defined as

��

�

∑=
=

∞

t
t

AA
AA

exp
!

.f
f

0

( )
( )

� (32)

The agreement between the dynamics described by 
the CME and the original ODEs [8] will be shown in 
section 5.

3.  Parameter fitting

Parameter inference in stochastic biochemical systems 
has been less developed than in deterministic models 
[4]. Maximum likelihood [7, 23, 24] represents a 
natural approach for this problem because of the 
probabilistic nature of stochastic models. In this 
section we will define the likelihood function for the 
specific experimental data of Min Wu et  al [8], but 
to help make the contrast with our approach clear, 
we first briefly describe their approach to parameter 
fitting using the ODE model.

There are two sets of lab experiments in [8]. In 
the first experiment, TXLX2 cultures are treated with 
full ATc induction (250 ng −ml 1) for 48 h. In the sec-
ond experiment, the cultures are treated with no ATc 
induction during the same time frame. Both cultures 
are then rediluted into media containing different ATc 
levels and the yEGFP measurements are recorded. The 
normalized GFP plots, as seen in figures 1(d)–(f) in [8] 
for the two experiments, do not coincide, which indi-

cates bimodality. The ATc region where the plots are 
distinct is called the bistable region [8].

The goal of the fitting scheme in their work [8] is to 
find the parameters (k n k n, , ,t t lATc  and kk) so that the 
bistable region predicted by the mathematical model 
fits the experimental data. A range for each parameter 
is specified, so that they have biologically reasonable 
values. Random parameter sets are then generated 
uniformly from these regions. The bistable region 
for each set is then calculated, and only those whose 
bistable regions are within 10% relative error from the 
experimentally established region are kept.

We explore here a more general approach to fit-
ting, in which the goal is not to fit the bistable region 
but to find the parameter set so that the frequencies 
shown in the experimental data can be captured in 
the mathematical model. Since in general, the flow 
cytometry measurements performed at different time 
points for different experiments produce histograms 
of the protein numbers, the goal of our approach of 
parameter fitting is to calibrate the parameters, which 
are k n k n, , ,t t lATc  and kk in this application, so that the 
probability distributions predicted by the mathemati-
cal model at these time points fit the experimental 
results. This can be formulated using the definition of 
likelihood function.

Suppose that N cells were under observa-
tion, and the ith cell was measured at time point ti 
of experiment ei and found to belong to the state 
=xx TetR , LacIi i i

T([ ] [ ] ) . Assuming a parameter set 
θ = k n k n k, , , ,t t l k

T
ATc( ) , we can solve the CME to 

compute the probability that a given cell is in that state, 
which is θ|p e txx , ,i i i( ). The total likelihood of all obser-
vations, θ|L DD( ), is the product of the probabilities of all 
observed cells:

∏θ θ| = |
=

L p e tDD xx , , .
i

N

i i i
1

( ) ( )� (33)

The problem of parameter fitting is then to find the 
parameter set θFit that maximizes this likelihood, or 
equivalently, the logarithm of the likelihood:

θ θ= |θ L DDarg maxFit   ( ( ))� (34)

θ= |θ L DDarg max log  ( ( ( )))� (35)

∑ θ= |θ
=

p e txxarg max log , , .
n

N

i i i
1

  ( ( ( )))� (36)

An optimization routine is required to find θFit. To 
conduct parameter searches, we employ five different 
optimization algorithms: PRAXIS [30], NELMIN 
[31, 32] and NEWUOA [33, 34], representing local 
optimization approaches, together with GLOBAL 
[35–37] and SIMANN [38, 39] which are two global 
optimization algorithms.

We note that there have been other works that dealt 
with modeling and analyzing experimental data of a 
genetic toggle switch, some of them very similar to the 

2 In [8], the gene network constructed using the TX and LX 
synthetic promoters is called TXLX.
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model discussed here [1, 21, 22] but with differences 
in the parameter fitting schemes. In [21] and [22], 
Munsky and Khammash fitted single-cell data using 
statistical quantities, such as the mean levels, marginal 
distributions, or full joint distributions, employing the 
FSP to compute the solutions to the CME. The fitted 
parameter arguments are then chosen to minimize the 
difference between the measured statistical quantity 
and the numerical solution of that quantity, using the 
1-norm since the FSP naturally provides exact bounds 
on the 1-norm error of the solution. Their search was 
run using multiple iterations of fminsearch in MAT-
LAB, which is a local optimization algorithm, and a 
simulated annealing algorithm. In this work, we use 
the concept of maximum likelihood to fit the param
eters instead.

4.  The Krylov-FSP-SSA algorithm

In the maximum likelihood approach, the CME is 
repeatedly solved over a large number of parameter 
sets, from which the likelihood of each parameter 
set can be computed and the parameters with the 
maximal likelihood is chosen. Generally, solving the 
CME is a formidable task. There are infinitely many 
states that the system can occupy when the copy 
numbers of species in the system are not bounded (as 
in the problem of interest here). Even when the copy 
numbers are bounded the size of the state space is 
prone to explosive growth (this is usually referred to 
as the ‘curse of dimensionality’). The choice of the 
CME solver is therefore crucial to the effectiveness of 
this approach. The stochastic simulation algorithm 
(SSA) or other Monte Carlo methods were chosen in 
many maximum likelihood works [2–6]. They avoid 
the curse of dimensionality by drawing random 
trajectories of the system and using the resulting 
frequencies to indirectly approximate the true 
probability distributions.

Recently, there has been much interest in the finite 
state projection (FSP) [40–42], which presents a direct 
approach for solving the CME. It tackles the curse of 
dimensionality by applying upper bounds on each 
species number, thereby restricting the full state space 
XX to a finite subspace XXJ indexed by J. An advantage 
of solving the CME directly by the FSP is that unlike 
Monte Carlo methods, such as the SSA [43–45] or its 
many improved variants [46–55], the FSP possesses 
an analytical bound on the error of the resulting prob-
ability distributions. As the number of states taken into 
account in the FSP is increased, this bound is decreased 
and the probability of any given state of the system is 
more accurate. This contrasts with Monte Carlo meth-
ods, where the error is statistical.

Building on the original FSP [40–42], other works 
have sought improvements [56–61] (see [62] for an 
overview and detailed analysis of the current algo-
rithms in the FSP family). Among these, the more 
successful variants transform the FSP method into an 

adaptive time-stepping algorithm by dividing t0, f[ ] 
into small intervals

� τ= < < < = = −+ +t t t t t t0 , .K f k k k0 1 1 1� (37)

At each time point tk, = …k K0, 1, , one would:

	 (1)	 Pick a reduced state space XX Jk that contains the 
most likely states over τ+t t,k k k[ ] and update 
AAJk accordingly.

	 (2)	 Approximate (using a truncated ppJk
 and 

padding the end result as necessary for 
consistency)

τ≈+t tpp AA ppexpk k J J k1 k k
( ) ( ) ( )� (38)

and then move on to the next iteration.
Performing both phases efficiently is crucial to the 

success of these time-stepping approaches. For phase 
(1), if XX Jk is too off the mark, the probability mass will 
escape and the error will be too large, but a too broad 
state space means a bigger AAJk and its matrix exponen-
tial can be very expensive to compute. For phase (2), 
an efficient algorithm for calculating the action of the 
matrix exponential is necessary.

Among existing implementations, the Krylov-FSP-
SSA method by Sidje and Vo [63] turns out to be reli-
able and efficient. The method uses SSA trajectories to 
find the likely states during the interval τ+t t,k k k[ ] of 
small length τk, and Krylov techniques [64] for evaluat-
ing the matrix exponential, which are among the most 
effective strategies, especially when the matrix is large 
and sparse [65]. Since the state space is kept compact, 
containing only the most likely states of the system, AAJk 
is usually considerably smaller than it would be in the 
original FSP algorithm, and therefore the time taken 
by the matrix exponential is even further reduced.

We performed a trial comparison between the 
Krylov-FSP-SSA and another FSP implementation 
[21]. We observed that, across 100 evaluations with 
randomized parameter sets, they achieved comparable 
accuracy but the former took on average 23s while the 
latter took 134s (section 5 has more details). It should 
be noted that there are many different FSP imple-
mentations, and choosing the right algorithm for any 
specific problem is not always obvious. However, the 
Krylov-FSP-SSA algorithm proved to be a powerful 
enough tool for our task that involves repeated solves 
of the CME during the optimization process.

5.  Numerical tests

5.1.  Computing platform
All tests reported here utilized resources of the Alabama 
Supercomputer Authority, which at the time of writing 
houses two supercomputers called SGI UV and DMC. 
The user can request a job to be executed on either of 
them, or can simply let the operating system select the 
more suitable system depending on the workload and 
availability. All codes were written in FORTRAN 77 
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and were run on the large queue of the SGI UV with 
1 processor core (Xeon E5-4640 CPU operating at 2.4 
GHz), 360 h time limit and 1GB memory limit.

5.2.  Comparison between the CME and ODE 
models
In section  2, we rewrote the deterministic ODE 
system in [8] into the stochastic CME. Therefore 
it is important to show that the two models indeed 
describe the same evolution in protein counts, which 
will be confirmed now.

Figure 2 shows the vector field of the ODE model, 
which dictates the evolution in numbers of TetR and 
LacI in any cell. The ODEs are solved for two different 
initial states:

=TetR , LacI 0, 10([ ] [ ] ) ( )� (39)

and

=TetR , LacI 10, 0( [ ] [ ] ) ( )� (40)

and the solutions are superimposed on the vector 
field (the black dashed line and the red solid line, 
respectively). Even though the initial states are close to 
each other, the trajectories branch out to two different 
steady states. This demonstrates the stochasticity of the 
system, where a small change in the protein counts at 
the beginning can lead to two different cell fates.

The CME is then solved with the Krylov-FSP-SSA 
algorithm for the same parameter set and the result-
ing transient probability distributions are also shown 
in figure 2. As predicted in the vector field of the ODEs, 
the probability mass first drifts toward the unstable 
steady state, then it is divided between the two modes 
of the bimodal distribution.

There are several observations to be drawn from 
this numerical test. First of all, the fact that the dis-
tributions resulting from the CME agree with the 
vector field of the ODEs implies that the two models 
describe the same problem, confirming the reliability 

of the CME. Second, even though the ODEs’ vector 
field can predict both the unstable and stable states, it 
cannot produce the transient distributions which are 
required for computing the likelihood function. These 
transient distributions also give a clearer picture of 
the cell’s fate. For example, solving the ODEs with ini-
tial state =TetR , LacI 0, 0( [ ] [ ] ) ( ) only results in one 
steady state. However, the stochastic nature of the sys-
tem implies that the system might end up in the second 
steady state instead. The CME not only predicts that 
but also shows the probability for the cell to commit to 
either outcome. This is difficult to do using the ODE 
model.

5.3.  Comparison between Krylov-FSP-SSA and SSA
Having checked that the CME model is compatible 
with the original ODE model in [8], we will now assess 
the choice of the Krylov-FSP-SSA as the CME solver 
for computing the likelihood function instead of 
Monte Carlo methods such as the SSA.

Figure 3 compares the probability distribution 
when the parameters are:

= = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc
� (41)

at 48 h, when the system is in equilibrium, by using 
on one hand the Krylov-FSP-SSA algorithm, and 
on the other hand 100 000 trajectories of the classic 
SSA, which took 2 min in runtime. A clear contrast 
here is that solving the CME by the Krylov-FSP-SSA 
algorithm took about 10 s. Recall also the advantage of 
FSP algorithms to offer computations accurate to an a 
priori threshold (set here to be −10 5).

In previous works of maximum likelihood esti-
mation for parameter inference in stochastic models 
[1–6], the SSA or other Monte Carlo approaches were 
used for computing the likelihood function. How-
ever, the large number of different parameter sets to 
be examined means that it is not realistic to compute 

Figure 2.  Left panel: vector field of the ODEs [8] when the parameters are = = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc . The 
red solid line and the black dashed line represent two solutions of the ODEs when the initial state is ([ ] [ ]) ( )=TetR , LacI 10, 0  and 
( )0, 10 , respectively. Four panels on the right: evolution of the probability distribution at time 12, 24, 48 and 180 h from solving the 
CME with the same parameter set.
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many realizations for each parameter set. The resulting 
distributions might therefore be incomplete. By con-
trast, for small gene regulation problems, where the 
state space is small enough and the integration interval 
is not too long, FSP algorithms can supply the prob-
abilities for many more states in a reasonable short 
runtime.

5.4.  Comparison between Krylov-FSP-SSA  
and original FSP
There has not been a systematic comparison between 
different FSP implementations in a wide range of 
biological problems. The Krylov-FSP-SSA algorithm 
was chosen here for several reasons. First, it can be used 
without prior assumptions on the model. Several other 
FSP algorithms require bounds on the state space, 
and this cannot be known without trial runs to find 
the areas on the state space that accumulate the most 
probability mass. The Krylov-FSP-SSA algorithm, 
however, finds the state space on the fly by following 
the direction of a few SSA runs and therefore does not 
need a priori bounds on the protein counts. Second, 
with its time-stepping feature, the Krylov-FSP-SSA 
algorithm can be more efficient than other FSP 
algorithms.

To check its effectiveness for the model under con-
sideration in this study, we compare it to a FSP imple-
mentation by Munsky [21] with the parameter set 
(41). Munsky’s FSP implementation was translated 
from its original MATLAB code to FORTRAN for a fair 
comparison, since it is well-known that FORTRAN is 
magnitudes faster than MATLAB.

The two algorithms were tested for 100 different 
parameter sets in the parameter space.

Each parameter set is randomly picked from the 
uniform distribution in its range, chosen to be the 
same as that used in [8]:

< <k0.01 1ATc� (42)

< <k1 400t� (43)

< <n1 5t� (44)

< <k1 400l� (45)

< <n1 5.l� (46)
For each parameter set, we record the runtime for 

finding the probability distributions by either algo-
rithm and then computing the likelihood function 
based on the distributions. The average runtime of 
each algorithm is shown in table 1. It is also crucial to 
check that the two algorithms give the same likelihood 
value. For this, we compute the relative 1-norm error 

for each parameter set θ:

θ θ
θ

=
| | − | |

| | |
relerr

L L

L

DD DD

DD
1 2

2

( ) ( )
( )� (47)

where θ|L DD1( ) is the likelihood computed by the 
Krylov-FSP-SSA algorithm, and θ|L DD2( ) is computed 
by Munsky’s FSP implementation. The average relative 
1-norm error of the 100 parameter sets is shown in 
table 1.

We can clearly see that even though the resulting 
likelihoods are practically the same between the two 
algorithms, the Krylov-FSP-SSA has a much shorter 
average runtime. This is because there are a number 
of stark differences between them, notably the fact 
that the Krylov-FSP-SSA is a time-stepping algorithm, 
unlike Munsky’s implementation in [21].

It is important to note that there are other FSP vari-
ants, many of which are time-stepping [57–59, 61] and 
some might be more efficient than the Krylov-FSP-
SSA in some instances. However, there has not yet been 
an in-depth numerical comparison between the vari-
ants, and the Krylov-FSP-SSA was retained because of 
its availability and its satisfactory performance for our 
job.

Figure 3.  The probability distribution at 48 h, computed by 100 000 SSA runs (left plot) and by the Krylov-FSP-SSA algorithm 
(right plot). The parameters are = = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc .

Table 1.  Comparison between the Krylov-FSP-SSA [63] and 
Munsky’s FSP implementation [21] using 100 evaluations with 
randomized parameter sets to compute the averages.

Average runtime of the Krylov-FSP-SSA 23 s

Average runtime of the FSP in [21] 134 s

Average relative 1-norm error (47) × −1.23 10 2
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With the CME solver chosen, the final piece of the 
puzzle is to pick an optimization algorithm for finding 
the parameter set with maximum likelihood. There are 
many different derivative-free optimization schemes 
and their variants. There have also been works to com-
pare these schemes in a variety of test problems, e.g. 
[27, 28]. Overall, the performance of the optimization 
schemes depends on the specific problems, and there 
is no single optimization scheme that is guaranteed to 
perform best in all circumstances [27].

Therefore, in this study we compare some popular 
local and global optimization algorithms for the specific 
task of stochastic parameter fitting with maximum like-
lihood. All of them are readily available online in FOR-
TRAN and represent different optimization approaches.

Some of the optimization routines being inves-
tigated are maximization schemes, while others are 
minimization schemes. In the latter case, the sign of 
the likelihood function is simply reversed. Also, the 
routines originally written using the single precision 
REAL data type have all been changed to DOUBLE 
PRECISION for a fair comparison.

5.5.  Local optimization schemes
We include three different local optimization 
algorithms for the fitting scheme:

	 (1)	 PRAXIS [30], one of the first derivative-free 
optimization solvers developed, using Powell’s 
method of conjugate search directions

	 (2)	 NELMIN [31, 32], an implementation of the 
Nelder–Mead algorithm for derivative-free 
optimization

	 (3)	 NEWUOA [33, 34], implementing Powell’s 
model-based algorithm using trust regions.

Aside from an initial guess for the parameter set, 
these routines require the input parameters shown in 
table 2. These values are recommended in the codes 

and are therefore used here.
As will be shown later, the performance of these 

optimization algorithms depends heavily on the 

starting guess: if the initial guess for the parameters 
is too far away from the correct parameters, the algo-
rithms are less likely to provide a good output. The 
experimental data [8] consists of the protein numbers 
at different time points. To compare the performances 
of the optimization codes, we produce synthetic data 
by solving for the distribution vectors resulting from 
the CME with the initial state =TetR , LacI 0, 0([ ] [ ]) ( ) 
with the true parameter set (41) at 5 different time 
points: 1 h, 6 h, 12 h, 24 h, and 48 h. For each time point, 
100 000 samples are randomly drawn from the distri-
bution vectors.

The frequencies of the protein counts at the 5 
time points are the input for the fitting scheme and 
the goal is to find the parameter set that can recre-
ate the distribution in the synthetic data. We remark 
here that synthetic data allows us to easily test our fit-
ting method and the performance of the algorithms 
on a variety of input, knowing that the results on 
the synthetic data are indicative of the results to be 
expected on experimental data. There is a limit of 
maximum 1000 function evaluations, which is ade-
quate for these algorithms to converge to some max-
ima.

The biological model [8], as is the case with most 
models, defines specific ranges for the parameters, 
which were given in (42)–(46). During the process, 
if the parameter set proposed from the optimization 
scheme is out of this range, its likelihood is defined 
to be a very small number (− −10 21) to dissuade the 
scheme from traveling in this direction.

To highlight how the initial guess plays a cru-
cial role when using a local optimization scheme, we 
implement all three schemes from three different ini-
tial guesses. In the first test:

= = = = =k k n k n0.2, 250, 4, 55, 3t t l lATc� (48)

in the second test:

= = = = =k k n k n0.9, 13, 1, 255, 3t t l lATc� (49)

and finally in the third test:

= = = = =k k n k n0.8, 8, 2, 280, 4.t t l lATc� (50)

Table 2.  Input parameters of the local optimization algorithms.

Input parameters Value Definition

PRAXIS T0 −10 3 Error tolerance

MACHEP × −2.22 10 16 Machine precision

H0 0.1 Maximum stepsize

FMIN 106 Estimate of minimum (used only for printing)

NELMIN STEP [ ]0.1, 0.1, 1, 1, 0.05 Size and shape of the initial simplex

REQMIN 106 Terminating limit for the variance of the function values

KONVGE 10 Convergence check

KCOUNT 1000 Maximum number of function evaluations

NEWUOA NPT 11 Number of interpolation conditions

RHOBEG 0.8 Initial value of a trust region radius

RHOEND 1 Final value of a trust region radius

MAXFUN 1000 Maximum number of function evaluations
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The numbers of function evaluations that each 
scheme requires, the final optimal parameter set and 

its likelihood are shown in table 3.
As can be seen in table 3, the initial guess for the 

first test is very far from the true parameter set used to 
produce the synthetic data, resulting in a small likeli-
hood. The final results from the local optimization 
schemes from this initial guess, therefore, only slightly 
improve the likelihood. The distributions they pro-
duce are similar and shown in figure 4. These distribu-
tions fail to recreate the distributions observed in the 
synthetic data, as expected.

The initial guess for the second test is closer to the 
true parameter set, and the final results from PRAXIS 
and NELMIN reflect this: their optimal likelihoods 
are greatly increased from the initial likelihood, and 
are very close to the true value. Between these two 

algorithms, the result from PRAXIS is better (larger 
final likelihood) and the algorithm converges after a 
much smaller number of function evaluations. On the 
other hand, NEWUOA converges after only 13 itera-
tions and only marginally increases the likelihood. The 
distributions resulting from PRAXIS and NELMIN are 
shown in figure 5. As reflected in the large likelihood, 
the final result recreates the bimodality in the synth
etic data and the evolution of probability distribu-
tion over time. Even though the initial guess produces 
distributions that are very different from the data, the 
optimization codes can easily calibrate the parameters 
to maximize the likelihood function and arrive at the 
distributions almost identical to the synthetic data.

In the third test, the small likelihood of the initial 
guess indicates that it is far from the optimal point. 
Nevertheless, the results from PRAXIS and NELMIN 

Table 3.  Results of the local optimization algorithms.

nt nl kt kl kATc

Number of function 

evalutations Likelihood

Synthetic data 1.56 3.35 11 264 0.94 −1873 172.8

Test 1 Initial guess 4 3 250 55 0.20 −6329 761.9

PRAXIS 4.02 5.00 249.93 55.01 0.08 131 (33 linear searches) −6314 107.0

NELMIN 2.26 4.98 245.05 76.39 0.02 193 −6294 412.4

NEWUOA 4.00 3.80 250.00 55.00 0.60 14 −6321 248.2

Test 2 Initial guess 1 3 13 255 0.90 −3659 419.6

PRAXIS 1.87 3.31 13.33 265.27 1.00 268 (83 linear searches) −1884 653.9

NELMIN 1.25 3.05 9.17 255.02 0.97 1007 −1923 230.3

NEWUOA 1.20 3.00 13.00 255.00 0.90 13 −3549 849.8

Test 3 Initial guess 2 4 8 280 0.80 −5413 880.6

PRAXIS 1.47 3.35 8.24 264.32 0.68 346 (121 linear searches) −1873 192.5

NELMIN 1.65 3.55 12.14 277.00 0.99 1004 −1905 593.2

NEWUOA 2.00 4.00 8.00 280.00 0.40 13 −2037 143.6

Figure 4.  (Test 1) Result of the optimization algorithms with starting parameter guess: = = = = =k k n k n0.2, 250, 4, 55, 3t t l lATc . 
First row: the synthetic data consisting of protein counts for 100 000 cells per time point, computed by SSA with the true parameters 
= = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc . Second row: the distributions at corresponding time points with the starting 

parameter guess. Third row: the distributions at corresponding time points with the final parameter guess.
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are still very close to the true values. Similar to the 
second test, PRAXIS converges after less function 
evaluations to a better solution than NELMIN, and 
NEWUOA converges after only 13 iterations to the 
worst solution among the three algorithms. Figure 6 
shows that the initial parameter guess produces dis-
tributions very different from the synthetic data, but 
the final result from the fitting scheme is similar to the 
frequency shown in the synthetic data.

We can conclude from these three tests that the per-
formance of local optimization algorithms depends 

greatly on the initial guess. This reflects the fact that the 
likelihood function is difficult to optimize: it is likely 
not convex, and has many local maxima that these 
algorithms cannot escape from. Among the three algo-
rithms, PRAXIS produces better results than NELMIN 
in spite of much smaller number of function evalua-
tions needed for it to converge. NEWUOA converges 
quickly but its results are inferior to PRAXIS and 
NELMIN.

In real life applications, however, neither the true 
parameter set nor its likelihood are known in advance. 

Figure 5.  (Test 2) Result of the optimization algorithms with starting parameter guess: = = = = =k k n k n0.9, 13, 1, 255, 3t t l lATc . 
First row: the synthetic data consisting of protein counts for 100 000 cells per time point, computed by SSA with the true parameters 
= = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc . Second row: the distributions at corresponding time points with the starting 

parameter guess. Third row: the distributions at corresponding time points with the final parameter guess.

Figure 6.  (Test 3) Result of the optimization algorithms with starting parameter guess: = = = = =k k n k n0.8, 8, 2, 280, 4t t l lATc . 
First row: the synthetic data consisting of protein counts for 100 000 cells per time point, computed by SSA with the true parameters 
= = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc . Second row: the distributions at corresponding time points with the starting 

parameter guess. Third row: the distributions at corresponding time points with the final parameter guess.

Phys. Biol. 14 (2017) 065001
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This therefore casts doubt on employing these local 
optimization algorithms. A solution to this might be 
to start the local optimization scheme from differ-
ent initial guesses, randomly chosen from the range, 
and select the best final result. This is the strategy of 
a number of global optimization algorithms, includ-
ing GlobalSearch and MultiStart in MATLAB [66, 67]. 
An advantage of this is that each optimization run is 
independent from the others, and so it is possible to 
produce a parallel algorithm. Another strategy is to 
employ global optimization schemes. These algo-
rithms focus on finding the maximum over the entire 
range and will be investigated in the next section.

5.6.  Global optimization schemes
Two global optimization algorithms are investigated:

	 (1)	 GLOBAL [35–37], based on the Boender–
Rinnooy–Stougie–Timmer algorithm [35, 36] 
and is a stochastic method involving sampling, 
clustering and local search. It was implemented 
in FORTRAN by Csendes [37], and the output 
contains up to 20 local maxima.

	 (2)	 SIMANN [38, 39], a simulated annealing 
algorithm [68–71].

The input parameters required by these routines 
are shown in table 4. Similarly to the tests with local 
optimization schemes, the values used here are recom-

mended by the codes when available.
The comparison of these two algorithms uses 

the same synthetic data in the previous section as the 
data for fitting parameters, as well as the range for the 

parameters. A limit of 5000 function evaluations is 
applied on each algorithm. In practice this has been 
shown to be adequate for good results.

Unlike GLOBAL, the algorithm SIMANN as well 
as other simulated annealing algorithms depend on 
important input parameters to produce good results. 
The algorithm escapes from local optima, which is 
important to produce better results than local optim
ization schemes, by accepting downhill steps. This 
decision is made by the Metropolis criteria using T 
(‘temperature’) and the downhill move size in a prob-
abilistic way. The downhill move is more likely to be 
accepted if T and the move size are smaller.

Therefore, the importance of the parameter T in 
the performance of SIMANN cannot be overstated. A 
smaller initial T0 might result in a step length too small, 
and the function evaluations gathered by the algo-
rithm are not enough to find the optima. The choice 
of an optimal initial temperature T0, however, depends 
on the problem and trial runs usually have to be per-
formed in order to find the right T0. Because of this, we 
performed ten different tests with SIMANN, each with 
a different initial temperature:

= = …T k10 , 1, , 10.k
0� (51)

SIMANN also requires an initial guess, and in our tests 
this is chosen to be

= = = = =k k n k n0.2, 250, 4, 55, 3.t t l lATc� (52)

Note that this initial guess was chosen for Test 1 
in the previous section  and was shown to result in 
unsatisfactory solutions from the local optimization 
schemes.

Table 4.  Input parameters of the global optimization algorithms.

Input parameters Value Definition

GLOBAL NSIG 6 Convergence criterion

M 1 Number of residual functions

N100 500 Number of sample points to be drawn uni-

formly in one cycle

NG0 10 Number of best points selected from the 

actual sample

SEED [ ]1, 2, 3, 4, 5, 6 Seeds for the random number generator

SIMANN T0 Initial temperature

X [4, 3, 250, 55, 0.2] Initial guess for the parameter set

RT 0.85 Temperature reduction factor

EPS 10 Error tolerance for termination

NS 20 Number of cycles

NT 100 Number of iterations before temperature 

reduction

NEPS 4 Number of final function values to decide 

upon termination

MAXEVL 5000 Maximum number of function evaluations

C [2, 2, 2, 2, 2] Vector controlling the step length adjustment

ISEED1 1 First seed for the random number generator

ISEED2 2 Second seed for the random number genera-

tor

VM [1, 1, 1, 1, 1] Step length vector
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The results from GLOBAL and SIMANN, with dif-

ferent initial temperatures, are shown in table 5.
The GLOBAL algorithm finished after 4572 func-

tion evaluations. By default, it outputs 20 local max-
ima found during the process, shown in table 5 with 
decreasing likelihoods. On the other hand, the result 
notes that there are too many clusters, implying that 
there are a large number of local maxima, confirming 
the reason for the failure of local optimization schemes: 
since the likelihood surface is multimodal, they conv
erge to the nearest local maximum and cannot escape, 
which is why the results depend on the initial guesses.

Despite this, GLOBAL was able to find very good 
results for the parameter set. The first three results have 

virtually the same likelihoods as the true parameter set. 
The parameters themselves are also very close to the true 
values, except kATc, which might imply that the likeli-
hood function is not very sensitive to this parameter.

On the other hand, all SIMANN runs exceeded the 
limit of 5000 function evaluations, which might be a 
result of the tight error tolerance (the variable EPS in 
table 4). As expected, the SIMANN runs starting with 
small initial temperature ( <T 100

4) result in param
eter sets with very small likelihoods. When =T 100

4, 
SIMANN converges to a good result, with likelihood 
only slightly smaller than that of the true parameter 
sets. With >T 100

4, however, the results from SIMANN 
are worse.

Table 5.  Results of the global optimization algorithms.

nt nl kt kl kATc Number of function 

evalutations

Likelihood

Synthetic data 1.56 3.35 11 264 0.94 −1873 172.8

GLOBAL 1.50 3.35 9.24 264.00 0.77 4572 −1873 171.5

1.55 3.35 10.63 264.01 0.90 −1873 172.2

1.29 3.35 4.31 263.98 0.33 −1873 181.5

3.40 3.17 21.41 267.17 1.00 −2002 408.4

3.54 2.95 8.16 269.13 0.22 −2078 322.3

4.35 2.32 22.18 283.77 0.83 −2321 101.8

4.53 4.34 18.74 329.37 0.47 −2637 311.5

2.14 1.88 7.67 310.07 0.38 −2668 259.4

3.07 2.11 19.95 324.27 0.99 −2743 173.7

4.15 2.65 18.98 342.64 0.59 −2916 667.9

3.51 2.35 2.94 346.36 0.05 −3004 177.6

3.32 2.91 381.46 268.37 0.02 −3740 211.5

3.08 3.02 172.91 272.32 0.76 −3744 919.8

3.75 2.76 29.49 264.93 0.03 −3745 244.7

4.64 3.10 73.69 266.65 0.37 −3746 429.0

3.22 3.01 270.00 261.40 0.22 −3748 192.9

1.51 3.21 163.64 266.39 0.47 −3750 487.6

2.90 2.64 283.87 262.79 0.59 −3757 378.6

1.61 3.40 283.71 281.80 0.95 −3762 507.3

4.60 3.47 334.80 280.11 0.69 −3767 111.1

SIMANN from 

=T 100
1

2.64 1.00 247.53 81.58 0.59 5000 (limit exceeded) −5375 590.2

SIMANN from 

=T 100
2

4.01 1.00 248.27 72.83 0.23 5000 (limit exceeded) −5495 580.3

SIMANN from 

=T 100
3

3.17 1.00 246.87 77.95 0.40 5000 (limit exceeded) −5425 506.7

SIMANN from 

=T 100
4

1.46 3.63 9.76 269.04 0.83 5000 (limit exceeded) −1873 618.3

SIMANN from 

=T 100
5

2.54 4.27 15.10 271.02 0.77 5000 (limit exceeded) −1880 111.8

SIMANN from 

=T 100
6

3.86 4.96 213.19 284.03 0.78 5000 (limit exceeded) −2142 633.2

SIMANN from 

=T 100
7

4.35 3.90 31.67 257.66 0.51 5000 (limit exceeded) −2034 590.3

SIMANN from 

=T 100
8

1.86 1.53 80.26 254.45 0.81 5000 (limit exceeded) −2146 360.6

SIMANN from 

=T 100
9

4.04 1.90 374.31 75.31 0.88 5000 (limit exceeded) −2041 629.5

SIMANN from 

=T 100
10

2.64 2.52 180.20 342.90 0.46 5000 (limit exceeded) −2086 480.4
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It is important to point out, however, that even with 
the optimal initial temperature of =T 100

4, the param
eter set from SIMANN is not as good as the three best 
results from GLOBAL. GLOBAL also outputs the local 
maxima, which are important to draw conclusions 
about the likelihood function itself, as opposed to only 
one best parameter set as in SIMANN, and it does all 
this with less function evaluations. Importantly, the 
input parameters that GLOBAL requires are not sig-
nificant to the final result, while SIMANN depends 
on some important input parameters which can only 
be set up by experience, knowledge of the problem, or 
trial optimization runs.

Although GLOBAL seems to be superior to 
SIMANN for this problem, the same conclusion can-
not be drawn universally. GLOBAL in particular, and 
the Boender–Rinnooy–Stougie–Timmer algorithm 
in general, will first sample parameter sets in the given 
range, and then transform the parameter sets into 
groups around local maxima. Clustering techniques 
are then employed to find neighborhoods of each local 
maximum, and local optimization runs from each 
cluster can point to the global maximum. While effec-

tive for problems with few parameters, other optim
ization algorithms can be more efficient when there are 
hundreds or more parameters to be found.

5.7.  Sensitivity effect
Finally, we investigate how sensitive the likelihood 
function of the synthetic data is with respect to each 
parameter in figure 7. The true parameter set (41) was 
used to generate the synthetic data, and the changes in 
the likelihood function when each parameter varies 
around its true value (with the other four parameters 
fixed to their exact numbers) are shown.

The likelihood function does not change much 
when kl or nl vary in their neighborhoods. In 
comparison, the likelihood responds more strongly to 
changes in kt or kATC. When nt increases from 1 to 1.56, 
however, the likelihood roughly increases two-fold in 
its value, implying that the model is most sensitive to 
this parameter. This sensitivity study may have impor-
tant ramifications especially in parameter fitting, since 
not knowing the sensitivity of the parameters may lead 
to the codes spending time calibrating the non-sensi-
tive parameters without getting a good result.

Figure 7.  The sensitivity of the likelihood function of the synthetic data with respect to each parameter around the parameter set 
= = = = =k k n k n0.94, 11, 1.56, 264, 3.35t t l lATc . The panels show the change in the likelihood function when there is a change in 

n n k k, , ,t l t l and kATc, respectively. The red squares correspond to the likelihood when the correct parameters are used.

Figure 8.  Comparison of the distributions at equilibrium (180 h) between the results from the different tests and the synthetic data 
that they are fitting.
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6.  Conclusion

Synthetic biology is an effective approach to study 
how microbes and multicellular organisms regulate 
their cell fate determination when the environments 
change or proper development needs to be ensured. 
An investigation into the different properties of 
the network requires a mathematical model that 
illuminates possible regulatory mechanisms, for which 
a systematic approach to calibrating free parameters is 
required. The model can then be cross-validated using 
other datasets or used to predict/refine outcomes of 
new experiments.

Here we have investigated a mutual inhibitory gene 
network in Saccharomyces cerevisiae, using the model 
from [8, 9]. The likelihood function is evaluated by 
using the Krylov-FSP-SSA algorithm to solve the CME 
for the probability distributions given a parameter set. 
The likelihood function is then maximized by differ-
ent optimization codes. This ensures that the solution 
results in a faithful portrayal of the evolution of the 
probability distribution over time and therefore con-
firms the mathematical model.

We compared for the first time different optim
ization algorithms for parameter fitting using maxi-
mum likelihood. There is still work to be done, as only 
one biological problem is considered here. There are 
also many different optimization approaches, and a 
more complete comparison between them for a variety 
of stochastic models will be beneficial to the systems 
biology community, given the importance of parameter 
inference in this field. The results in this work might be 
one step further towards establishing a parameter infer-
ence method of reference in stochastic models.

From the numerical tests in section 5, it is apparent 
that local optimization schemes do not perform well 
for our purpose. This underlines the difficulty of fit-
ting stochastic models by maximum likelihood. The 
likelihood surface is often multimodal, and therefore 
it is difficult for the local optimization algorithms to 
escape a local maxima.

Figure 8 offers a comparison of the marginal dis-
tributions for both proteins from the three tests with 
local optimization algorithms at 180 h, where the sys-
tem reaches equilibrium and clearly shows a bimodal 
pattern. Since the results from PRAXIS and NELMIN 
do not differ much in the resulted distributions even 
though the parameter sets are not the same, we only 
use the results from PRAXIS. The marginal distribu-
tions from test 1 do not match the data, with the TetR 
distribution being inconsistent with the synthetic data 
and the LacI distibution showing unimodality instead 
of bimodality. On the other hand, tests 2 and 3 show 
a bimodality in agreement with the synthetic data, 
although there is a slight difference in the height of the 
peaks of the probability distribution. Note that each 
peak represents one mode, or one possible fate that the 
cell can end up in.

In practice, choosing a starting parameter set for 
each local optimization run can be a challenging task. 
Usually, a range for each parameter is chosen so that 
they are biologically relevant. The parameter search is 
then conducted by randomly choosing different initial 
guesses for the parameters in these ranges, leading to 
thousands of function evaluations per optimization 
run, for which only the best solution is recorded at the 
end. This task can be done in an embarrassingly par-
allel code, since the optimization runs are independ-
ent from each other. As can be seen from table 3, the 
results are often satisfactory when the starting param
eter guess is good. It is thus possible to have satisfactory 
results by employing the local optimization schemes in 
a parallel multi-start fashion.

On the other hand, the numerical comparison 
showed that global optimization algorithms produce 
better results than local optimization schemes, at the 
expense of more function evaluations. Only two global 
optimization schemes were considered in this study, 
of which GLOBAL [35–37] proved to be the better 
choice. This of course might change when a different 
biological model is tested, as GLOBAL is effective only 
for problems with few unknown parameters.

Our comparison considered only optimization 
algorithms in FORTRAN that are freely available. 
There have been other works comparing local and 
global optimization methods [27, 28] but the test 
cases in those works belong to different classes from 
that studied here. A broader and deeper comparison 
involving more biological models and more optim
ization algorithms might be essential to the biomath-
ematical community given the importance of the 
parameter fitting problem.
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