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Abstract Many traditional approaches for solving the chemical master equation
(CME) cannot be used in their basic form when reaction rates change over time,
for instance due to cell volume or temperature. One technique is to use the Magnus
expansion to represent the solution to the CME as the action of a matrix exponential,
for which Krylov-based approximation methods can be applied. In this paper, we
compare two variants of the Magnus scheme with some popular ordinary differential
equations (ODE) solvers, such as Adams-Bashforth, Runge-Kutta and Backward-
differentiation formula (BDF). Our numerical tests show that the Magnus variants
are remarkably efficient at computing the transient probability distributions of a tran-
scriptional regulatory system where propensities vary over time due to cell volume
increase.

Keywords Chemical master equation + Magnus expansion + Matrix exponential

1 Introduction

Consider a chemical reaction system consisting of N molecular species Sy, ..., Sy
that interact through M reactions. The reaction rates cy(t) are time-dependent scale
factors for how likely the reaction k occurs at time ¢. The state vector of the system
is defined as

x(t) = (x1,...,x8)7,
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where x; is the count for species S; at time ¢. The propensity function oy (x(t), t) of
reaction Ry at the current state x (¢) and current time ¢ is defined so that the probability
of such a reaction occurring during the infinitesimal time interval [z, t + dt) is equal
to ag (x (¢), t)dt. If the reaction occurs, the state vector is updated as x (¢) := x(¢) +
vy, where the stoichiometric vector vy stores the changes in species counts.

The chemical master equation (CME) [1] seeks P(x,t) = Prob{x(¢) = x}, the
probability that the system is in state x at time #:

dP(x,1) < M
— =D mx — v P =) = Y (e DPGL D, (1)

k=1 k=1
Let X ={x,...,x,} be the ordered set of n possible states, where x; =
(x1is ..., xn;)T. We can rewrite (1) as a system of ordinary differential equations

(ODEs) governing the change in p(t) = (P(xy,1), ..., P(x,,t))” from the known
initial distribution p:

p(t) = A1) - p(1),

p p )

where the transition rate matrix A(f) = [a;;(t)] € R"*" is defined as

M r .
_Zkzlak(xjvt)a lflzja

ajj = yai(x;, 1), ifx;=x;+ v,
0, otherwise.

Note that A changes over time due to the time-dependency of the reaction rates cy.

The state space X can be infinite in theory, but is kept finite in practice, although n
can be very large. In this case, we can apply the finite state projection (FSP) [2], which
reduces the state space to only the probable states during the time period of interest.
The vectors p(t), p, and matrix A(¢) in (2) are then truncated to only values of this
reduced finite state space. It is important to note that the CME is traditionally solved
indirectly by drawing a large number of trajectories from Monte Carlo methods, such
as the stochastic simulation algorithm (SSA) [3] or first reaction method (FRM) [4],
and then computing the frequency at the desired time point. Their resulting error is
statistical, in contrast to the analytical bound on the error when the CME is solved
directly by employing the FSP. We only consider solving the CME directly in this
study, and the results are compared against the frequencies from a large number of
FRM trajectories.

We will discuss different approaches for solving the ODE system (2) in the next
sections. For convenience, we will denote the ODE problem as

p() = f(t, p() =A@) - pQ).



A Comparison of the Magnus Expansion and Other Solvers ... 263

2 ODE Solvers

2.1 Adams

Adams methods form a family of linear multi-step methods, among which are explicit
Adams-Bashforth and implicit Adams-Moulton. We use the ADAMS-PECE scheme
by Shampine and Gordon [5], which implements the implicit Adams-Moulton
according to

1 =t + Ry,
D1 = Py + Iy (IBrAMka +BM fet+ -+ ﬁ(?Mfk—r-&-l) ;
Siv1 = fat1, Pest)s

where { BAM };:0 are given analytically. The unknown p,; ~ p(f;41) is involved

in both sides of the formula, leading to a nonlinear problem that is solved with a
fixed-point scheme starting from the solution of the explicit Adams-Bashforth.

2.2 Runge-Kutta

Runge-Kutta methods form a class of multistage, one-step iteration ODE solvers.
The explicit Runge-Kutta of order r proceeds with

k1 =t + Ry,
Yi =P+ he X2y mEE f e+ hieR5 y s i

=1,...,r,
Piv1 =Pt Y, bef (’k +hkcfl(’yj)’

in which the coefficients {mf;.K } o {pFE}_, and {cRK}_ are defined by the
i,j=
Butcher-tableau.
In this comparison, we use the solver RK78 from the RKSUITE by Brankin et
al. [6], which is a reputed Runge-Kutta method that controls the error and stepsize

by using embedded Runge-Kutta formulae with orders 7 and 8.

2.3 Backward-Differentiation Formula

Backward-differentiation formula (BDF) methods are linear multi-step and follow
the formula of order r:
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1 =t + Dy,
Piet = mBPPE [t b)) + o5 fr 4+ ofPF fis
fk+1 = f(tk+17 pk+l)v

where the coefficients {afP"

BPFY” " and BEPF are given analytically. The formula
forms a nonlinear problem, because p,_; appears on both sides.
We use the VODPK/BDF implementation [7] which has different options for

solving the nonlinear problem:

1. BDF-FI: directly by functional iteration.

2. BDF-GM-LU: Newton root finding scheme; each linear system during the
scheme is solved by SPIGMR (Scaled Preconditioned Incomplete GMRES),
preconditioned by the LU decomposition.

3. BDF-GM-LUO: Newton root finding scheme; SPIGMR preconditioned by the
incomplete LU decomposition, which discards elements not in the sparsity pat-
tern of A.

4. BDF-LU: each linear system during the Newton scheme is solved directly by
LU decomposition.

5. BDF-LUO: the linear system is solved directly by incomplete LU decomposition.

3 The Magnus-Based Methods

3.1 Magnus Expansion

The Magnus expansion [8] seeks to express the solution to (2) in the form of

p(1) = exp(£2(1)) - po. 3)

where $2(¢) is an infinite series consisting of integrals and matrix commutators of
A(1).

Originally a theoretical method in physics, there has been increasing interest to
transform the Magnus expansion into a numerical solver for initial value problems
(IVPs) in the form of (2). One such approach [9, 10], denoted MAGNUS in our
comparative tests, truncates the Magnus series after 4 terms and approximates the
integrals by the Gauss-Legendre quadrature, resulting in a fourth-order numerical
scheme with constant stepsize h:

Lyl =t + h,

(1A a9
=2(A+A)+ 183 (AzAl AAy),
Pi+1 = exp(a) * P>
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We approximate p,_; by the matrix-free Krylov technique of EXPOKIT that only
uses the action of o on vectors. See [11] for more details, and also [12] for a com-
parison with traditional ODE solvers in the context where A is time-independent,
i.e. constant, in (2).

3.2 Magnus with an Adaptive SSA-based State Space

During the integration time of any ODE solver for (2), most of the values in p(¢) will
be extremely small and therefore computing the full distribution can be expensive
without gaining much accuracy. For CME problems with time-independent rates,
the FSP-SSA method [13] reduces the state space X at each step to only states with
potentially large probabilities during the small interval [#, # + &]. This is done by
running SSA trajectories [3] from states in the current state space, and updating the
state space to contain all states that the SSA trajectories travel through. The ‘holes’
in the state space are then patched by the r-step reachability [2], which seeks all
states that can be connected to the state space with r reactions or less, and expands
the state space to include those. We incorporate this adaptive SSA-based state space
expansion scheme into the MAGNUS-SSA method:

tip1 =t + h,
X is reduced to states with probability > 10719,

X is expanded by SSA over [#, # + h] and r-step reachability with r = 5,
ar=A(n+(3=L)n), a=a(n+(s+L)n),
o=2(A1+A4)+ hf? (A2A1 — A1Ay),

Piy1 = €xp(0) - p;.

Note that the SSA only serves here as a method for expanding the state space over
the small time-stepping interval, and accounts for less than 5% of the computational
runtime in the numerical tests. Computing p,_; via EXPOKIT is the most time-
consuming part of the algorithm. In this initial implementation, the stepsize # is
constant. We developed this method further in another work [14] to control the error
and allow for adaptive stepsizes that can be either rejected or accepted.

4 Numerical Comparisons

4.1 The Alabama Supercomputer

All numerical tests reported here utilized resources of the Alabama Supercomputer,
which houses two supercomputers called SGI UV and DMC. The user can request
a job to be executed on either of them, or can simply let the operating system select



266 K. Dinh and R. Sidje

the more suitable system depending on the workload and availability. All codes were
written in FORTRAN 77 and were run on the large queue of the SGI UV with 1
processor core (Xeon E5-4640 CPU operating at 2.4 GHz), 360 hr time limit and
120 GB memory limit.

4.2 The Transcriptional Regulatory Problem

The biological problem for comparing the ODE solvers depicts a transcriptional
regulatory system [15]. The problem consists of six species:

M : protein (monomer),
D : transcription factor (dimer),
DNA : DNA template, free of dimers,
DNA.D : DNA template, bound at one binding site,
DNA.2D : DNA template, bound at both binding sites,
RNA : mRNA produced by transcription,

which can interact through ten reactions:

(&)

RNA RNA + M; M 3 a:
DNA.D RNA + DNA.D; RNA = a:
% DNA +D;

DNA.D +D DNA.2D; DNA.2D — DNA.D + D;

ﬂ)
ﬁ)
DNA+D 5 DNA.D; DNA.D
a %
M+M =2 D; D L M+M

The reaction rates are:

cr= 004357 ¢ = 0.0007s~";
3= 00787 ¢4 = 0.0039s5':

c5 = Oﬁ'lé'(lfg)gs_l; ce = 0.4791s~1;

07 = SOZI0 1 oy = 0.8765 - 107157
Co = 0A9§}2,())9571§ clo = 0.557",

where A is the Avogado’s constant, and V (¢) is the cell volume at time ¢, which
increases from the initial value V (0) = 10~ " in accordance to

V(t) = V(0)e"@/

during the entire cell cycle time period T = 35 minutes until the cell divides.
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We wish to follow the distributions of the count of each species from the initial
state where the cell has two dimers and the DNA is unbound:

M =0; D =2
DNA =1; DNA.D =0;
DNA.2D =0; RNA =0.

The distributions from solving (2) by the ODE solvers are compared with the fre-
quency from 100,000 FRM trajectories. The fixed FSP state space for the ODE
solvers is found by finding the maximum and minimum of each species count during
these trajectories, except for MAGNUS-SSA, which does not require a priori fixed
FSP bounds and changes the state space adaptively instead. In practice, these bounds
can be defined based on the knowledge of the biological problem or the experimental
data, and may not require stochastic simulations.

As noted before, both MAGNUS and MAGNUS-SSA schemes were imple-
mented here with constant stepsize, taken as 4 = 1 s in the reported numerical exper-
iments. We also compared the actual execution times of the methods with that of the
100,000 trajectories of the FRM method (which obviously becomes more time-
consuming as more trajectories are sampled, and is used here instead of the standard
SSA because the reaction rates are time-dependent), and we observed that the FRM
runtime was comparable to the Magnus-based methods.

4.3 Numerical Results

We performed two numerical tests. The first test has small end time point and therefore
results in a small state space, whereas the second one has longer end time point with
a much larger state space and poses a large stiff problem for the ODE solvers. The
error tolerance for all ODE solvers is tol = 107,

4.3.1 Numerical Test 1

We seek the probability distribution at 1, = 30s. The FRM trajectories suggest the
FSP bounds:

0< M <80< D <3

0< DNA <1;0<DNADC<I;

0 <DNA2D <1;0< RNA <4

X has n = 1440 states and A has nz = 8233 nonzero elements.
The probability distributions at #; from all ODE solvers are displayed in Fig.1.
Their results agree with each other and fit the frequency from FRM.



268 K. Dinh and R. Sidje

0.6 1 1 1
05 ssA
0 — MAGNUS
0.4 08 08 08 — -MAGNUS-SSA
2 0.4 o ADAMS-PECE
Zo0s 0.6 0.6 0.6 = RK78
K 0.3 + BDF-SPGMR-LUO
S 02 0.4 0.4 0.4 ¢ BDF-LUO
a 0.2 A BDF-SPGMR-LU
0.1 01 02 0.2 0.2 M ggi;k?
0 0 0 0
012345678 0 1 2 3 0 1 2 3 4 0 10 1
M D RNA DNA DNA.D DNA.2D

Fig. 1 Probability distributions at r; = 30s from the ODE solvers in test 1

4.3.2 Numerical Test 2

We now attempt to find the probability distributionatzs = 10 m. Because of the larger
time range, the FSP bounds suggested by the FRM trajectories are more extensive:

0< M <46,0< D <59
0< DNA <1; 0<DNAD <1;
0<DNA2D <1; 0< RNA <12,

resulting in n = 293280 states in X and nz = 2091993 nonzero elements in A. The
results from the ODE solvers are listed in Table 1.

Among the ODE solvers, ADAMS-PECE and RK78 did not finish, detecting that
the problem was stiff. BDF-LU and BDF-FI also did not finish and reported that they
are not appropriate solvers for the problem. BDF-SPGMR-LU failed before reaching
tr because there was not sufficient storage, even though the work array was extended
to the maximum size allowed on the Alabama Supercomputer.

The probability distributions from MAGNUS, MAGNUS-SSA and BDF-
SPGMR-LUO, BDF-LUO are compared in Fig.2. While BDF-SPGMR-LUO and
BDF-LUO produce wrong results, the distributions from MAGNUS and MAGNUS-
SSA agree with the FRM frequencies. The Magnus-based methods are therefore the
only reliable ODE solvers for this biological problem.

Table 1 Reports from the ODE solvers in test 2

ODE solver Results

MAGNUS Distributions at ¢ are in agreement with FRM frequencies
MAGNUS-SSA Distributions at ¢ are in agreement with FRM frequencies
ADAMS-PECE Fails before reaching ¢ (stiff problem detected - flag 5)
RK78 Fails before reaching 7 ¢ (stiff problem detected - flag 4)
BDF-SPGMR-LUO Distributions at s do not fit the FRM frequencies
BDF-LUO Distributions at ¢ do not fit the FRM frequencies
BDF-SPGMR-LU Reports that there is insufficient storage

BDF-LU Reports that it is a wrong solver for this problem

BDF-FI Reports that it is a wrong solver for this problem
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Fig. 2 Probability distributions at 7 = 10 m from the ODE solvers in test 2

5 Conclusion

The ODE solvers in this comparison have been tested in [12] across problems in
the form of (2) where A is time-independent, in which case the solution is p(¢) =
exp(tA) - p,. The authors showed that EXPOKIT [11] and BDF-LUO [7] are the
most efficient among the ODE solvers. We have considered solvers for the CME
with time-dependent rates, with EXPOKIT embedded in the Magnus schemes. To
our knowledge, such numerical comparisons of Magnus-based methods against other
ODE solvers for large biological problems are just starting to appear in the literature.

That Adams, Runge-Kutta and BDF-FI solvers fail for#; = 10 mis to be expected.
The reaction rates in the transcriptional regulatory problem differ greatly in magni-
tude, suggesting that the ODE system is stiff. These ODE solvers behave like explicit
methods and therefore are not suitable choices.

Among the remaining four BDF implementations, those relying on the complete
LU decomposition are too expensive for this large problem. The incomplete LUO
decomposition, on the other hand, loses important information along the integration
and therefore their solutions are unreliable.

The Magnus-based methods were the only solvers to successfully predict the
probability distributions at s = 10 m, suggesting that they can be a powerful tool for
solving stiff CME problems with time-dependent rates. Especially, the MAGNUS-
SSA possesses the powerful advantage of flexibly changing the state space to follow
the probability mass. It therefore does not demand the FSP bounds from the user,
which are problem-dependent and require knowledge about the biological problem,
and does not follow the entire probability distribution, which is expensive without
offering meaningful accuracy. Disadvantages in current Magnus implementations,
however, include the lack of an adaptive time-step scheme and the fact that the
constant stepsize h for the Magnus methods has to be chosen efficiently. We pur-
sued adaptive time-stepping strategies in [14], which also contains more numerical
comparisons.
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