
INEXACT METHODS FOR THE CHEMICAL MASTER EQUATION

WITH CONSTANT OR TIME-VARYING PROPENSITIES,

AND APPLICATION TO PARAMETER INFERENCE

by

KHANH N. DINH

ROGER B. SIDJE, COMMITTEE CHAIR
LAYACHI HADJI
DAVID HALPERN

TATIANA MARQUEZ-LAGO
MIN SUN

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Mathematics

in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2018

Copyright Khanh N. Dinh 2018
ALL RIGHTS RESERVED

ABSTRACT

Complex reaction networks arise in molecular biology and many other different

fields of science such as ecology and social study. A familiar approach to modeling such

problems is to find their master equation. In systems biology, the equation is called the

chemical master equation (CME), and solving the CME is a difficult task, because of the

curse of dimensionality. The goal of this dissertation is to alleviate this curse via the use of

the finite state projection (FSP), in both cases where the CME matrix is constant (if the

reaction rates are time-independent) or time-varying (if the reaction rates change over

time). The work includes a theoretical characterization of the FSP truncation technique by

showing that it can be put in the framework of inexact Krylov methods that relax

matrix-vector products and compute them expediently by trading accuracy for speed. We

also examine practical applications of our work in delay CME and parameter inference

through local and global optimization schemes.

ii

DEDICATION

To my parents and other people who have cared for me like their child, and my

sister, who I hope will find such joy in research as I did.

iii

ACKNOWLEDGMENTS

My most sincere gratitude goes to my advisor, Dr. Roger Sidje, who has encouraged

me through this difficult but usually exhilarating journey. He has taught me the

importance of details, the art of writing scientific works and many other important skills

that I need to succeed and still have to improve upon. The funding of his NSF grant

DMS-1320849 was also crucial in supporting me for most of my PhD program.

I would also like to express my gratitude toward my committee members for their

time and support: the external member from the University of Alabama at Birmingham

School of Medicine, Dr. Tatiana Marquez-Lago, and the local members from the University

of Alabama’s Department of Mathematics, Dr. Layachi Hadji, Dr. David Halpern and Dr.

Min Sun.

I want to thank Dr. Douglas Shepherd from the University of Colorado in Denver,

who introduced me to the q-Bio Summer School, and Dr. Brian Munsky from Colorado

State University in Fort Collins, who organized the school and accepted me. This summer

program was one of the most important experiences in my research life, as it allowed me to

meet many leaders in the field of mathematical biology, and establish ongoing

collaborations with some of them. I am grateful to Dr. Marek Kimmel from Rice

University in Houston, who accepted to be my mentor in the summer school, and has

generously continued our project ever since.

I also want to acknowledge the generous support and encouragement from Dr. Liem

Vo. I am deeply grateful to Mrs. Vo for her care and support of my well-being. Many

thanks to the Department of Mathematics, the Graduate School, and the College of Arts

and Sciences for funding my travels.

I want to take this occasion to thank the professors who have left lasting impacts on

my mathematics education, Dr. Dang Duc Trong and Dr. Pham The Bao. I want to thank

iv

Dr. Anthony Dang for introducing me to the University of Alabama and for his interest in

my progress.

I want to acknowledge Leah Compton for helping me improve English, and David

Neal, Xuan He, Alex Barnes, Sheik Ahmed, Tania Hazra, Cong Hoang, Thy Nguyen, Bryan

Sandor, Douglas Weathers, Teresa Portone and Amy Puente for their friendship. Arum Lee

and Tung Lam are almost like family to me. Brandon Reid, Keisha Cook and other people

in our research group have been a source of new research ideas, and David Nash helped me

with parallel coding, which is among the most difficult and important skills I have tried to

acquire. I want to thank Timothy Homan and Summer Atkins for being great friends.

Yuanyuan Song has been a true friend, and a great traveling companion. Special thanks

goes to Sean Buckalew, who has supported me without asking for anything in return.

Finally, I want to thank my family for supporting me through this program. My

dad was the one who showed me the important role of applied mathematics and helped me

through the first steps of research. My mom is always there when I need to vent about life

or work. I always enjoy spending time with Uncle Tin, whom I consider a friend. Huy Vo is

my brother, with whom I have spent all my undergraduate and graduate years and I don’t

think our research could have been as fruitful without each other’s help. My sister has

given me emotional support over the years, and I wish her all the best in her research life.

v

CONTENTS

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER 1 INTRODUCTION . 1

1.1 Outline of this dissertation . 2

CHAPTER 2 UNDERSTANDING THE FINITE STATE PROJECTION 5

2.1 Introduction . 5

2.2 Chemical master equation . 5

2.3 The original finite state projection . 8

2.4 Time-stepping FSP variations . 10

2.5 Update the state space . 11

2.5.1 Update by r-step reachability . 11

2.5.2 Update by multiple absorbing states 11

2.5.3 Update by sliding windows . 13

vi

2.5.4 Update by the optimal state space 14

2.5.5 Update by GORDE . 15

2.5.6 Update by SSA . 18

2.6 Precondition the FSP . 19

2.6.1 Precondition by time scale separation 19

2.6.2 Precondition by aggregation . 21

2.7 Approximate the solution . 22

2.7.1 Approximate by uniformization . 23

2.7.2 Approximate by Krylov-based techniques 25

2.8 Tensor decomposition alternative . 27

2.9 Illustrative example . 30

2.10 Softwares . 33

2.10.1 FSP Toolkit . 33

2.10.2 CMEPy . 35

2.10.3 Expokit . 35

2.11 Discussion . 36

2.12 Conclusion . 37

CHAPTER 3 ANALYSIS OF INEXACT KRYLOV SUBSPACE METHODS . . . 38

3.1 Introduction . 38

3.2 Inexact chemical master equation - a motivation 41

vii

3.3 Bounds on the residual . 43

3.3.1 Homogeneous case . 45

3.3.2 Nonhomogeneous case . 47

3.4 Bounds on the error . 48

3.4.1 General upper bound on the error . 48

3.4.2 Bounding the error gap . 49

3.4.3 Series expansion of the error . 50

3.4.4 Exactness in the case of truncated approximations 53

3.5 Numerical examples . 55

3.5.1 Example 1 - Illustration of the residual gap when Proposition 3.1 is
satisfied . 56

3.5.2 Example 2 - Illustration of the residual gap when Proposition 3.1 is
not satisfied . 57

3.5.3 Example 3 - Illustration of the error and residuals when Theorem 4.4
is satisfied . 58

3.6 Conclusion . 61

CHAPTER 4 CHEMICAL MASTER EQUATION WITH TIME-VARYING RATES 63

4.1 Introduction . 63

4.2 Biological origins of CME with time-varying rates 64

4.3 Non-homogeneous equations . 65

4.4 Delay CME . 66

viii

CHAPTER 5 SOLVING CHEMICALMASTER EQUATIONWITH TIME-VARYING
RATES BY MAGNUS EXPANSION 71

5.1 Introduction . 71

5.2 Monte Carlo methods . 72

5.2.1 First reaction method . 73

5.2.2 Stochastic simulation algorithm . 74

5.3 ODE solvers . 75

5.3.1 Adams . 75

5.3.2 Runge-Kutta . 76

5.3.3 Backward-differentiation formula . 76

5.4 Magnus-based methods . 77

5.4.1 Magnus expansion . 77

5.4.2 Krylov subspace technique . 79

5.4.3 Magnus with an adaptive SSA-based state space 80

5.5 Adaptive time-stepping schemes . 82

5.5.1 Adaptive time-stepping scheme for MAGNUS-SSA 83

5.5.2 Error approximation . 84

5.6 Numerical tests . 88

5.6.1 Test 1 - the model of two competing T cell clonotypes 89

5.6.2 Test 2 - the epidemic model with periodic contact rate 91

5.6.3 Test 3 - the transcriptional regulatory model 95

5.6.4 Observations . 98

ix

5.7 Conclusions . 101

CHAPTER 6 APPLICATION OF THE KRYLOV-FSP-SSA METHOD IN PA-
RAMETER INFERENCE . 102

6.1 Introduction . 102

6.2 The CME for the TetR-LacI gene regulation problem 105

6.3 Parameter fitting . 109

6.4 The Krylov-FSP-SSA algorithm . 111

6.5 Numerical tests . 112

6.5.1 Computing platform . 112

6.5.2 Comparison between the CME and ODE models 112

6.5.3 Comparison between Krylov-FSP-SSA and SSA 115

6.5.4 Comparison between Krylov-FSP-SSA and original FSP 115

6.5.5 Local optimization schemes . 121

6.5.6 Global optimization schemes . 125

6.5.7 Sensitivity effect . 130

6.6 Conclusion . 132

CHAPTER 7 CONCLUSIONS . 135

REFERENCES . 137

x

LIST OF TABLES

3.1 Michaelis-Menten reactions and propensities. 59

5.1 Results from the ODE solvers for the model of two competing T cell clonotypes
(Test 1). The error is computed as the maximum 1-norm difference between
the marginal distributions from each ODE solver and the FRM. 91

5.2 Results from the ODE solvers for the epidemic model with periodic contact
rate (Test 2). The error is computed as the maximum 1-norm difference
between the marginal distributions from each ODE solver and the FRM. . . 94

5.3 Results from the ODE solvers for the transcriptional regulatory model (Test 3).
The error is computed as the maximum 1-norm difference between the marginal
distributions from each ODE solver and the FRM. 97

6.1 Comparison between the Krylov-FSP-SSA [1] and Munsky’s FSP implemen-
tation [2] using 100 evaluations with randomized parameter sets to compute
the averages. 117

6.2 Input parameters of the local optimization algorithms 121

6.3 Results of the local optimization algorithms 122

6.4 Input parameters of the global optimization algorithms 126

6.5 Results of the global optimization algorithms 127

xi

LIST OF FIGURES

2.1 A lattice describing all possible states for the stochastic gene toggle model,
in Example 1. The limits in the FSP for protein U is n1, and protein V is n2.
The red numbers are the state indices. 30

2.2 Probability distributions (logscale) of the stochastic gene toggle after 2s (left
column) and 30s (right column) using SSA with 105 trajectories (first row),
SSA with 108 trajectories (second row), and SSA-driven FSP [1] (third row). 34

3.1 Example 1: when the principal 100 × 100 submatrix becomes contained in
the truncated matrix, the bound condition of Proposition 3.3.1 is satisfied,
resulting in δres

m within the tolerance. 56

3.2 Example 2: The bound condition of Proposition 3.3.1 is never satisfied, and
δres
m is greater than the tolerance. 58

3.3 Sparsity pattern of the matrix A from the CME of the Michaelis-Menten
enzyme kinetics in Example 3. 59

3.4 Example 3: The true error (on the left y-axis), and the true residual and
residual gap (on the right y-axis) . 60

3.5 Example 3: ‖E‖ and ‖Em‖; computed as |J | increases from 230 to 280;
v = e1, τ = 10−2, and m = 30 . 61

4.1 (a) Full-sized model. (b) Delay model . 67

5.1 Probability distributions from the two competing T cell clonotypes (Test 1) . 88

5.2 Error estimates in the MAGNUS-SSA variants from the two competing T
cell clonotypes (Test 1) . 88

5.3 Probability distributions from the SIR model with periodic contact rate (Test 2) 91

5.4 Error estimates in the MAGNUS-SSA variants from the SIR model with
periodic contact rate (Test 2) . 92

5.5 Probability distributions from the transcriptional regulatory model (Test 3) . 94

5.6 Error estimates in the MAGNUS-SSA variants from the transcriptional
regulatory model (Test 3) . 94

xii

6.1 Schematic diagram of the network used in Min Wu et al. [3]. 103

6.2 Left panel: vector field of the ODEs [3] when the parameters are kATc =
0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35. The red solid line and the
black dashed line represent two solutions of the ODEs when the initial state
is ([TetR], [LacI]) = (10, 0) and (0, 10), respectively. Four panels on the right:
evolution of the probability distribution at time 12, 24, 48 and 180hr from
solving the CME with the same parameter set. 113

6.3 The probability distribution at 48hr, computed by 100,000 SSA runs (left
plot) and by the Krylov-FSP-SSA algorithm (right plot). The parameters are
kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35. 113

6.4 (Test 1) Result of the optimization algorithms with starting parameter guess:
kATc = 0.2, kt = 250, nt = 4, kl = 55, nl = 3. First row: the synthetic data
consisting of protein counts for 100,000 cells per time point, computed by SSA
with the true parameters kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35.
Second row: the distributions at corresponding time points with the starting
parameter guess. Third row: the distributions at corresponding time points
with the final parameter guess. 118

6.5 (Test 2) Result of the optimization algorithms with starting parameter guess:
kATc = 0.9, kt = 13, nt = 1, kl = 255, nl = 3. First row: the synthetic data
consisting of protein counts for 100,000 cells per time point, computed by SSA
with the true parameters kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35.
Second row: the distributions at corresponding time points with the starting
parameter guess. Third row: the distributions at corresponding time points
with the final parameter guess. 119

6.6 (Test 3) Result of the optimization algorithms with starting parameter guess:
kATc = 0.8, kt = 8, nt = 2, kl = 280, nl = 4. First row: the synthetic data
consisting of protein counts for 100,000 cells per time point, computed by SSA
with the true parameters kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35.
Second row: the distributions at corresponding time points with the starting
parameter guess. Third row: the distributions at corresponding time points
with the final parameter guess. 120

6.7 The sensitivity of the likelihood function of the synthetic data with respect to
each parameter around the parameter set kATc = 0.94, kt = 11, nt = 1.56, kl =
264, nl = 3.35. The panels show the change in the likelihood function when
there is a change in nt, nl, kt, kl and kATc, respectively. The red squares cor-
respond to the likelihood when the correct parameters are used. 131

6.8 Comparison of the distributions at equilibrium (180hr) between the results
from the different tests and the synthetic data that they are fitting. 131

xiii

CHAPTER 1

INTRODUCTION

A familiar approach to modeling a complex reaction network is to find the master

equation that describes the joint probability density function of the population of the

reactants over time. In their extensive review [4], Goutsias and Jenkinson listed many

fields of science in which such an equation is of considerable importance, such as ecological

networks, pharmacokinetic networks and social networks.

In systems biology, the equation is called the chemical master equation (CME) [5],

and its solution is the probability distribution of finding the system in all possible states

(i.e., all possible integer-valued populations of the reacting chemical species). The CME

will be reviewed in detail in the next chapter.

It is easy to see why solving the CME is a formidable task: if the copy numbers of

species in the system are not bounded, then there are potentially infinitely many states

that the system can occupy. Even if we apply a bound on the species numbers, the size of

the CME increases exponentially with the numbers of species and therefore solving for the

probability distribution of all of them is numerically very expensive.

Despite this so-called “curse of dimensionality”, solving the CME has been of great

interest to the systems biology community, because unlike deterministic models, the CME

captures the randomness of the biological processes. It has been shown in different

biological contexts that single molecular events may significantly impact the process, which

underlines the importance of stochasticity in these models.

The main approach to solving the CME has often been using Monte Carlo

algorithms, of which Gillespie’s stochastic stimulation algorithm (SSA) [6] has been

extensively employed. However, the SSA can be very slow, considering the numerous runs

1

needed to average the probability distribution. Several modifications to improve its

efficiency include the tau-leaping method [7, 8] or slow-scale SSA [9].

The finite state projection (FSP) method [10] is a different approach to provide an

approximation to the actual probability distribution at the end time as well as the

transient probabilities with a guaranteed accuracy. Soon after the FSP, an adaptive

time-stepping version was introduced [11, 12] and followed by other variants. These

algorithms have proved to give accurate probability distributions, and their speed has been

helpful in gene regulation problems where a set of parameters have to be found, which can

only be achieved by computing the distributions for many parameter sets and choosing the

distribution closest to experimental data [13].

Classic time-stepping FSP schemes, however, cannot be employed in the basic form

if the reaction rates change over time. In this case, the CME must be solved by traditional

ODE solvers. There also has not been many works that review the different FSP variants

in a systematic fashion, or establish the theoretical background for why they are efficient

for certain biological problems. These issues will be targeted in this dissertation, which

aims at providing a broad view on the theory and application of the FSP.

1.1 Outline of this dissertation

This dissertation consists of five main parts. The first part introduces the CME and

surveys different variants of the FSP for solving the CME with constant rates. The second

part generalizes the FSP as an inexact Krylov subspace method and discovers its

analytical background. The third part examines different contexts such as delay CME that

can be reformulated as a CME with time-varying rates, in which case most FSP

approaches are not applicable. The fourth part introduces a new FSP approach based on

the Magnus expansion for solving a CME with variable rates, and compares this algorithm

with existing ODE solvers on several biological problems. The last part examines the

application of the FSP in parameter inference for a stochastic biological model. Below is a

breakdown of the following chapters in greater details:

2

• Chapter 2 sets up the chemical master equation (CME), which is the problem that

will be addressed in the rest of the dissertation, as well as the finite state projection

(FSP), which is the main method employed to solve the CME in this dissertation.

Several variants of the adaptive time-stepping FSP in the literature are discussed.

• Chapter 3 generalizes the FSP and develops the theoretical background for the FSP

truncation technique in the framework of inexact Krylov methods that relax

matrix-vector products. Schemes for controlling the bounds on the residual or the

error of this method are established.

• Chapter 4 reviews three different scenarios where a CME with time-varying rates

arises. It may emerge naturally from the biological context where the environmental

changes affect the reaction rates. On the other hand, a non-homogeneous ODE can

also be expressed in the form of a CME. Finally, the CME for a biological system in

which some reactions require a delay time period to finish (i.e. delay CME) can

either be transformed to or approximated as a CME with time-varying rates.

• Chapter 5 reviews traditional approaches for solving a CME with variable rates:

kinetic Monte Carlo methods, such as first reaction method (FRM) and stochastic

simulation algorithm (SSA), and ODE solvers, such as Adams, Runge-Kutta, and

Backward-differentiation formula (BDF). We then develop a new adaptive

time-stepping integration algorithm for this particular problem, based on the FSP

and the Magnus expansion, equipped with four different techniques for controlling

the error. The chapter concludes with several numerical tests comparing the new

method with existing ODE solvers.

• Chapter 6 considers an important application for the FSP methods reviewed and

developed in this dissertation, which is parameter inference in a stochastic biological

model through local and global optimization schemes. This is performed via a

3

data-driven maximum likelihood approach, where the probability distributions for

many different parameter sets are computed by the FSP.

• Finally, chapter 7 summarizes the findings made in this dissertation and identifies

opportunities for future work.

4

CHAPTER 2

UNDERSTANDING THE FINITE STATE PROJECTION

This chapter is based on work published in Physical Biology [14].

2.1 Introduction

In this chapter, we formularize the chemical master equation (CME). We also

describe several variants of the finite state projection (FSP) in the literature and discuss

their strengths and weaknesses.

The chapter is organized as follows: Section 6.2 describes the notation, formalizes

the CME, and comments on popular Monte Carlo methods. Section 2.3 outlines the

original FSP method. Section 2.4 describes a time-stepping framework, where each step

consists of three stages, and we show how all variants of the FSP aimed at improving one

or more of these stages. From there, the variants are presented in Sections 2.5, 2.6 and 2.7,

following how they fit in the time-stepping framework. Note that each method is

accompanied by a simplified pseudocode for ease of readability. Another approach of

solving the CME via tensor decomposition is discussed in Section 2.8. An illustrative

example is given in Section 2.9 to demonstrate how to generate the CME matrix for a

specific biological case. Section 2.10 lists some available software for solving the CME by

using the FSP. The strengths and weaknesses of solving the CME are discussed in

Section 2.11. We finish with some concluding remarks in Section 6.6.

2.2 Chemical master equation

Consider a chemical reaction system consisting of N molecular species S1, . . . , SN

that interact through M reactions of the form

Rk : a1kS1 + · · ·+ aNkSN
ck−→ b1kS1 + · · ·+ bNkSN

5

for k = 1, . . . ,M . The ck are reaction rate constants, which are scale factors for how likely

such a collision of the reactants results in a reaction. At any time, the system can be

described as the numbers of copies of each species. We then can define the state vector of

the system as the vector of these numbers:

x = (x1, . . . , xN)T ,

where xl is a count for species Sl. We denote x(t) as the state of the system at time t.

The propensity function αk(x(t)) of reaction Rk at the current state x(t) is defined

so that the probability of such a reaction occurring during the infinitesimal time interval

[t, t+ dt) is equal to αk(x(t))dt.

When reaction Rk happens, the state vector is updated as

x(t+ dt)← x(t) + νk, (2.1)

where the stoichiometric vector νk, representing the change in species numbers, is defined

as

νk = (b1k − a1k, . . . , bNk − aNk)T .

We are now interested in the probability that the system is at state x at time t,

which we denote P (x, t) = Prob{x(t) = x}. Assuming that we know the number of each

species at t = 0 (from which we can deduce P (x, 0)), the CME [5] dictates that

dP (x, t)

dt
=

M∑
k=1

αk(x− νk)P (x− νk, t)−
M∑
k=1

αk(x)P (x, t). (2.2)

The expression is clear if we note that αk(x− νk)dt is the probability for state x− νk to

transition to state x through reaction Rk during [t, t+ dt), and
(∑M

k=1 αk(x)
)
dt is the

probability for the system to escape from state x through any reaction during that same

time period.

6

Let X be the set of all possible states, if we order these states as x1, . . . ,xn, where

xi = (x1i, . . . , xNi)
T and n is the total number of states, then (2.2) defines a set of ODEs

governing the change in p(t) = (P (x1, t), . . . , P (xn, t))
T :

ṗ(t) = A · p(t), (2.3)

where here we set p(0) = (1, 0, . . . , 0)T by assuming that the system is at state x1 at t = 0.

The transition rate matrix A = [aij] ∈ Rn×n is defined as

aij =


−
∑M

k=1 αk(xj), if i = j

αk(xj), if xi = xj + νk

0, otherwise

.

From (2.3) we can find the probability vector at the end point tf :

p(tf) = exp(tfA)p(0),

where the exponential matrix is defined as

exp(tfA) =
∞∑
m=0

(tfA)m

m!
.

An explicit formula for p(t) can be given only in extremely simple cases, such as

monomolecular reaction systems [15], therefore it is necessary to numerically solve at a

prescribed end point tf .

The enormous size of the CME usually makes it too challenging to solve directly.

The stochastic simulation algorithm (SSA) takes a piecemeal approach by computing

single realizations of the state vector rather than an entire probability distribution. For

each realization, the algorithm updates the state as in (2.1), by randomly choosing the

7

time between events, dt, and the next reaction index, k. The τ -leap variant that seeks to

improve the efficiency of the SSA consists in allowing a larger time between events, τ ← dt,

so that more that one reaction can be accumulated in the state update.

As noted before, the cost of these methods is compounded by the multiple runs that

have to be done to average the results in a Monte Carlo manner. More details about these

algorithms can be found in [6, 7, 8], and further improvements in [16, 9, 17].

2.3 The original finite state projection

Unlike SSA, the FSP method seeks to directly approximate the probability density

function that is the solution of (2.3). We define XJ to be a finite subset of states in X,

where J is the index set of those states. Consider all the other states not in X as only one

state, which we call the sink state G. Let AJ be a submatrix of A containing only the

elements on the rows and columns indexed by J , and p(XJ , t) contains only the

probabilities of states indexed in J at time t. The FSP method approximates p(X, t) by

pFSP
J (t) = pFSP(XJ , t), which follows the master equation

 ṗFSP
J (t)

ġ(t)

 =

 AJ 0

−1TAJ 0


 pFSP

J (t)

g(t)

 , (2.4)

with initial distribution  pFSP
J (0)

g(0)

 =

 p(XJ , 0)

1−
∑
p(XJ , 0)

 .

The theoretical solution to this set of ODEs can be proven to be


pFSP
J (t) = exp(tAJ)pFSP

J (0)

g(t) = 1T (I − exp(tAJ))P FSP
J (0) + g(0)

. (2.5)

8

Note that since AJ is extracted from A, pFSP
J (t) has a different statistical meaning from

p(XJ , t): the elements in pFSP
J (t) are the probabilities that the system is at the

corresponding states at t and has never left XJ during [0, t). On the other hand, g(t) is the

probability that the system visited the sink state G at least once during [0, t) (also note

that if XJ contains the initial state then g(0) = 0). In [10] the authors showed that these

facts imply

p(XJ , t) ≥ pFSP
J2

(t) ≥ pFSPJ1
(t) ≥ 0 (2.6)

if J1 ⊂ J2, and ∥∥∥∥∥∥∥
 p(XJ , t)

p(XJ ′ , t)

−
 pFSP

J (t)

0


∥∥∥∥∥∥∥

1

= g(t) (2.7)

where J ′ is the index set of the states not in J . The significance of these two properties

cannot be overstated: (2.6) guarantees that the FSP approximation only improves

monotonically element-wise if we keep expanding the state space, and (2.7) gives us the

exact evaluation of the 1-norm error.

The original FSP algorithm follows directly from the solution (2.5) and these two

observations.

Original FSP algorithm
(B. Munsky, M. Khammash, [10], 2006)

Find the FSP approximation with 1-norm error less than ε at tf :
1: Initialize i = 0, J0 and AJ0 .
2: Approximate exp(tfAJi)p(XJi , 0).

If 1T exp(tfAJi)p(XJi , 0) ≥ 1− ε, then stop. We have the approximation

p(XJi , tf) ≈ exp(tfAJi)p(XJi , 0),

with
‖p(XJi , tf)− exp(tfAJi)p(XJi , 0)‖1 ≤ ε.

3: Increment i and add more states into Ji, then return to step 2.

9

2.4 Time-stepping FSP variations

There has been great interest in modifying the FSP algorithm into a time-stepping

scheme. Many approaches that have been developed for this purpose follow the same

framework demonstrated in the following variable time-stepping FSP algorithm.

The algorithm divides [0, tf] into small intervals

0 = t0 < t1 < · · · < tK+1 = tf .

At every interval [tk, tk+1], the quest is then to find the index set Jk of the most likely

states over that interval. The probability vector at tk+1 is then calculated by

p(tk+1) ≈ exp(τkAJk)pFSP
Jk

(tk), (2.8)

and the algorithm moves on to the next time interval.

Though not always the case, the problem of approximating (2.8) can be even

further reduced before solving, especially when special properties of the reactions or the

species are realized. In these cases, the reduced system will be preconditioned in step 2 of

the algorithm. Apart from that, steps 1 and 3 are taken from the original FSP algorithm.

Note that our notation for the FSP approximation is pJk(tk) = pFSP
Jk

(tk) = pFSP(XJk , tk)

and not to be confused with the true solution p(XJk , tk).

Variable time-stepping FSP algorithm
(K. Burrage, M. Hegland, S. MacNamara, R. Sidje, [11], 2006.
B. Munsky, M. Khammash, [12], 2007.)
0: Start from k = 0, tk = t0.
1: Find the time step τk, and the state space XJk+1

containing states most likely over
[tk, tk+1] where tk+1 = tk + τk.

2: Precondition the reduced system before solving.
3: Approximate

p(tk+1) ≈ exp(τkAJk+1
)pJk(tk).

4: If tk+1 < tf , set k = k + 1 and go to Step 1.

10

Note that the variable time-stepping FSP algorithm serves more as a framework,

because each step from 1 to 3 can be modified for the specific biological problem. The next

three sections will drill further into these steps: section 2.5 considers different strategies to

update the state space, section 2.6 discusses some methods to precondition the FSP, and

section 2.7 introduces some techniques to compute the action of matrix exponential on a

vector while taking advantage of the fact that the entire matrix exponential is not needed.

2.5 Update the state space

It is clear that a crucial part of the variable time-stepping FSP algorithm is to find

a strategy for updating the state space: it needs to contain enough states that contribute

the most to the probability mass, but a too large state space results in a bigger AJ and a

more time-consuming evaluation of its matrix exponential.

2.5.1 Update by r-step reachability

The original paper by Munsky and Khammash [10] has a suggestion for how to

expand the state space through the concept of reachability. They made an observation

that, the system ends up in a state at tk+1 by jumping from a state in tk through only

finitely many states in X. Therefore, much of the probability mass at tk+1 will be

contained in the set of the states either in XJk−1
or can be reached from a state in XJk−1

within one reaction, we call the index set of these states R1(Jk−1):

XR1(Jk−1) = XJk−1

M⋃
i=1

{x+ νi ∈X;x ∈XJk−1
}.

Inductively, the index set of states either in XJk−1
or within r reactions from XJk−1

can be defined as Rr(Jk−1) = R1(Rr−1(Jk−1)).

2.5.2 Update by multiple absorbing states

One disadvantage of the r-step reachability algorithm is that of the states that can

be reached from the current state space, the probabilities of many are so low that including

11

Update by 2.5.1 r-step reachability
(B. Munsky, M. Khammash, [10], 2006)
0: Jk = Jk−1

1: Repeat r times:
Jk = R1(Jk).

them in the state space only results in a big matrix without a noticeable improvement in

error. The multiple absorbing states method, discussed in [12], attempts to solve the

problem. Instead of grouping all the states not in XJk into only one sink state, the method

divides them into L sink states G1, . . . , GL such that Gi contains all states that escape XJk

through reaction Ri. Letting gi(t) be the probability that the system escapes to Gi from

XJk , and g(t) = (g1(t), . . . , gL(t))T , the system then follows the ODEs

 ṗJk(t)

ġ(t)

 =

 AJk 0

Q 0


 pJk(t)

g(t)

 (2.9)

instead of (2.4), where

Q(i, j) =


αi(xj), if (xj + νi) /∈XJk

0, otherwise
.

The solution of (2.9) at tk+1 is


pJk(tk+1) = exp(τkAJk)pJk(tk)

g(tk+1) =
(∫ τ

0
Q exp(ξAJk)dξ

)
pJk(tk) + g(tk)

. (2.10)

As we can see, the set of ODEs (2.9) does not give us a better approximation for

pJk(t), but it gives us information about what reactions leak the most probability mass

from XJk . To expand the state space, we then only consider the directions of the reactions

contributing much to the probability mass drop. In [18], the absorbing states are defined

12

by an arbitrary set of nonlinear inequalities, which can avoid the stiffness of the matrix

AJk and therefore can be much more efficient.

Update by 2.5.2 r-step reachability and multiple absorbing states
(B. Munsky, M. Khammash, [12], 2007, [18], 2011)
0: Start from k = 0, time-step τk and tolerance on error εk.
1: Define a set of functions {f1, . . . , fL} and a set of bounds {b1, . . . , bL}.
2: XJk is defined as all states x so that

fi(x) ≤ bi, i = 1, . . . , L,

and Gi contains the all states exiting XJk through inequality fi.
Note: The next two stages in the Variable time-stepping FSP algorithm solve for p(tk+1)
and g(tk+1) by applying (2.10). In case 1Tg(tk+1) > εk, we can redo the process and
choose a larger bi when gi(tk+1) is big.

2.5.3 Update by sliding windows

The sliding windows algorithm updates the state space from XJk−1
at tk to XJk at

tk+1 by constructing a window Wk ⊂X that aims to contain the most probability mass

during [tk, tk+1]. We then can solve for the probability distribution of Wk at tk+1, but the

whole vector is not stored. Only the states in Wk having a considerable probability at tk+1

are kept in XJk . Therefore the algorithm can avoid having a big state space, and as a

result, computing the probability vector for the next time step can be more efficient.

Wk is constructed by realizing which states are frequently visited by the system

during [tk, tk+1]. The task is done by applying a stochastic approach to estimate the largest

and smallest populations attained by each species over [tk, tk+1], and then use these

extremes to form the boundaries of the window Wk.

Since the exact transient dynamics during [tk, tk+1] is not needed, the extremes are

found by a crude random approximation during this time period, instead of using the SSA

which could be slow. The time interval [tk, tk+1] is divided into small equal intervals

[tk, tk + ∆, tk + 2∆, . . . , tk+1].

13

During each interval [t(l), t(l) + ∆], the propensity of each reaction Ri is assumed to remain

constant to αi(x(l)) where x(l) is the state at t(l). This means that the number of reactions

Ri to occur during [t(l), t(l) + ∆] is Poisson distributed, with parameter αi(x(l))∆. Taking

into account that the standard deviation of the Poisson distribution is
√
αi(x(l))∆,

statistically it can be assumed that the actual number of reactions Ri happening during

[t(l), t(l) + ∆] is at most

κ+
i (x(l),∆) = αi(x

(l))∆ +
√
αi(x(l))∆

and at least

κ−i (x(l),∆) = max

(
0, αi(x

(l))∆−
√
αi(x(l))∆

)
.

Because the interest is in building a window containing considerable probability mass,

either of these two extremes is assumed to have happened, for each reaction of type Ri.

Continuing until reaching tk+1, we have one trajectory where the worst case scenario

happens at each step. The maximum and minimum of xd, the number of the dth species of

state x, along all trajectories are then the boundaries for the window Wk.

Update by 2.5.3 Sliding windows
(V. Wolf, R. Goel, et al., [19], 2010)
0: Start with XJk−1

at tk, time-step τk, parameter δ.
1: Find the extremes of each dimension d for the window, b+

d and b−d . These are estimates
of the largest and smallest populations attained by the dth species over [tk, tk+1].

2: The state window will be Wk = XJk−1
∪ {x ∈X : b−d ≤ xd ≤ b+

d }.
3: Solve for

p(Wk, tk+1) = exp(τkAWk
)p(Wk, tk).

4: XJk = {x ∈ Wk : P (x, tk+1) > δ}, and p(XJk , tk+1) is truncated accordingly from
p(Wk, tk+1).

2.5.4 Update by the optimal state space

The “optimal" FSP method [20] underlines the problem that methods such as r-step

reachability has and that the sliding windows tries to solve: expanding the state space

14

without removing any or most improbable states can result in an unnecessarily big problem

to solve. The proposal of the Optimal FSP method is intuitive: after expanding the state

space from XJk−1
at time tk to XJk at time tk+1 using conventional methods, we solve for

p(tk+1) and then remove the states in XJk whose probabilities at tk+1 are too small.

The question that arises is then how many states do we remove at each step. The

algorithm proposes the following approach, consisting of two steps:

• Step 1: Find the state space J ε/2k by any FSP method (the work applied r-step

reachability) so that the 1-norm error at tk+1 is less than a prescribed ε
2
.

• Step 2: Find and delete the states in J ε/2k with the smallest probabilities at tk+1 that

add up to ε
2
, resulting in the state space Jk.

Jk is then guaranteed to have the 1-norm error at tk+1 of at most ε.

We need to point out that the method is only “optimal" in the sense that the

resulting state space has the fewest elements while still ensuring that the the 1-norm error

is less than a prescribed ε.

However, the fact that the first step in the method applies r-step reachability with

error ε/2 instead of ε as in the original r-step reachability ensures that finding the state

space will be much slower than other methods, although approximating pk(tk+1) is faster.

2.5.5 Update by GORDE

The Gated One Reaction Domain Expansion (GORDE) is another method targeted

at making r-step reachability more efficient. However, instead of optimizing the state space

after solving for the probability vector at tk+1 like the Optimal FSP method, GORDE

estimates the probabilities of the likely reachable states using a gating function.

The main disadvantage of r-step reachability is that it does not evaluate the

likelihood of the new states when expanding the state space. The result is that the

algorithm expands in the directions of the unlikely states as much as in the directions of

the more probable ones. GORDE seeks to solve this by assigning every state x that is m

15

Update by 2.5.4 Optimal FSP method
(V. Sunkara, M. Hegland, [20], 2012)
0: Start from XJk−1

at tk, time-step τk and tolerence εk.
1: Apply r-step reachability to find Jk so that

1− 1Tp(tk+1) <
εk
2
.

2: Sort pk(tk+1) in descending order, then remove the states with the smallest probabilities
at tk+1 into J ′ so that

1Tp(XJ ′ , tk+1)

is as close to εk
2
as possible.

3: Compress the state space at tk+1:

Jk ← Jk − J ′.

Jk is the smallest state index set so that

1− 1Tpk(tk+1) < εk.

steps from XJk−1
with the gating value um(x), the probability that the system travels from

XJk−1
to x in exactly m reactions during [tk, tk+1] and has stayed there since. um(x) is

therefore an upper bound of and a crude approximation for P (x, tk+1). It acts like a weight

function integrated in r-step reachability: the algorithm only expands in the directions of

states x with larger um(x).

The most practical fact about the gating function is that it can be calculated

inductively in m:

um(x) =
M∑
i=1

αi(x− νi)
αsum(x− νi)

× (1− e−αsum(x−νi)τk)um−1(x− νi). (2.11)

The algorithm for GORDE is then as follows: the gating values for states in XJk−1

are initialized as u0(XJk−1
) = pk−1(tk). XJk−1

is then expanded in 1-step into ∇̃1, and the

gating values for ∇̃1 are then evaluated by (2.11). If the gating values for the entire ∇̃1

sum up to be less than a prescribed tolerence εk, then the algorithm stops and

XJk = XJk−1
∪ ∇̃1. If not, choose the smallest set ∇1 ⊂ ∇̃1 containing the highest gating

16

values and expand only from that set in 1-step into ∇̃2, with the new tolerence equals εk

substracted by the gating values of states in ∇̃1 −∇1 and redo the whole process. In the

end, if the gating values of all states in ∇̃m add up to less than the tolerence, then the

state space at tk+1 is

XJk =∇0 ∪ · · · ∪∇m−1 ∪ ∇̃m.

Update by 2.5.5 GORDE
(V. Sunkara, [21], 2013)
0: Start from XJk−1

at tk, time-step τk and tolerence εk.
1: Initialize ∇0 = XJk−1

, u0(x) = P (x, tk) and τ0 = εk.
2: For m = 1, 2, . . .

• Expand ∇m−1 by 1-step reachability:

∇̃m ← R1(∇m−1).

• Compute the gating function for x ∈ ∇̃m:

um(x) =
M∑
i=1

αi(x− νi)
αsum(x− νi)

×

(1− e−αsum(x−νi)τk)um−1(x− νi),

with αsum =
∑M

i=1 αi.

• Compress ∇̃m into the smallest ∇m so that∑
x∈∇̃m−∇m

um(x) < τm−1.

• Stop the loop if |∇m| = 0.

Otherwise update
τm = τm−1 −

∑
x∈∇̃m−∇m

um(x).

3: The next state space at tk+1 is

XJk =∇0 ∪ · · · ∪∇m−1 ∪ ∇̃m.

17

2.5.6 Update by SSA

The SSA-driven method [1] is a combination of the r-step reachability and an

approach similar to sliding windows. However, instead of forming the boundaries of a

hyper-rectangle as in the sliding windows method, it uses SSA trajectories to build a

collection of sets that can possibly be disjoint.

At every step, the method eliminates the states in XJk−1
that have become

improbable. It does so by applying the condition

Jk− 2
3

= {i ∈ Jk−1 : µ(xi) ≥ ε},

where µ(xi) is a dropping criterion, e.g., µ(xi) = maxj=k−`,...,k pi(tj) calculates the highest

probability xi has in the last ` steps.

The method then runs the SSA from the states in Jk− 2
3
and saves all the states

visited along the trajectories as Jk− 1
3
. To smooth these random trajectories the method

further applies r-step reachability on Jk− 1
3
. The result of this will be the state space Jk at

tk+1.

A central feature to the efficiency of the method is its “lazy evaluation". The SSA

runs are only performed when deemed necessary by an error control mechanism, and even

then, the SSA trajectories are only extended as far as needed for the suitability of Jk.

Update by 2.5.6 SSA-driven method
(R. Sidje, H. Vo, [1], 2015)
0: Start from XJk−1

at tk, time-step τk, parameters ` and r, and the tolerence ε.
1: Eliminate the states in XJk−1

with low probabilities: Jk− 2
3

= {i ∈ Jk−1 : µ(xi) ≥ ε},
where µ(xi) = maxj=k−`,...,k pi(tj).

2: Jk− 1
3

=
⋃
i∈J

k− 2
3

SSA(xi, tk, τk).

3: Jk is the r-step expansion of Jk− 1
3
.

18

2.6 Precondition the FSP

The original FSP algorithm proceeds with the matrix exponential right after finding

the state space. This can sometimes be slow, either because there is a difference in the

magnitudes of the reaction rate constants, which causes the matrix to be stiff, or the state

space is simply too large. Time scale separation [22] improves the numerical performance

in the former case, by applying the perturbation theory, and aggregation [23] solves the

latter case by simply grouping states together.

2.6.1 Precondition by time scale separation

Time scale separation is based on the authors’ observation in [22] that in some

biological cases, some reactions can have higher propensities and therefore happen more

frequently than other reactions. The result is that there are clusters of states, the states

within the same cluster can transition regularly to each other, and transitions between

clusters are rare, which implies that the generator A can be divided into

A = H + εV ,

where H is a block diagonal matrix, and ε� 1. Each block of H represents a proper

master equation for the states in one cluster, and εV contains the transition rates between

these clusters.

Since the blocks of H represent ODEs for a proper master equation, and their

dimensions are much less than the dimension of A, it is computationally cheap to compute

their eigensystems, which is equivalent to having the eigensystem of H :

S : S−1HS = Λ̃

S has same block diagonal structure as H

Λ̃ = diag(λ̃1, . . . , λ̃n)

19

We rearrange λ̃1, . . . , λ̃n into a decreasing sequence

Re(λ1) ≥ · · · ≥ Re(λn).

Notice that if H has m blocks, then λ1 = · · · = λm = 0, Let SR ∈ RN×m and SL ∈ Rm×N

contain the right and left eigenvectors of H for these zero eigenvalues (which construct the

right and left null-spaces of H), respectively. Note that the left eigenvectors are all 1.

Using perturbation theory, the authors observed that the projection

Ṽ = SLV SR

V(t) = SR exp(εṼ t)SL (2.12)

gives the asymptotic approximation to the problem:

t > T (ε) : ‖p(t)− V(t)p(0)‖ = O(ε). (2.13)

The time it takes for the approximation to be applicable is estimated to be

T (ε) ∼ ln(ε/Re(λm+1)).

If the distinction between the clusters of states is clear, then it is guaranteed that

Re(λi≥m)� −ε, and T (ε) is small. However, there can be cases where the λi’s decrease

only mildly at first, and T (ε) can be larger than the end point tf . When such a problem is

encountered, we can simply add in the right and left eigenvector of H corresponding to

λm+1 in SL and SR (the left eigenvector no longer being 1). The projection (2.12) then

satisfies (2.13) with

T (ε) ∼ ln(ε/Re(λm+2)).

If the new time restriction is still too big, we can keep adding in eigenvectors of H until

20

the condition T (ε) < τ is satisfied.

Precondition by 2.6.1 Time scale separation
(S. Peles, B. Munsky, M. Khammash, [22], 2006)
0: Start with AJk and time-step τk. Separate AJk into H and εV , and m is the number

of blocks in H .
1: Find SR, SL corresponding to λ1, . . . , λm.
2: T (ε) = ln(ε/Re(λm+1)). Continue if T (ε) < τk, otherwise increase m and return to Step

1.
3: Compute Ṽ = SLV SR.
4: Approximate exp(ετkṼ).
5: Compute V(τk) = SR exp(ετkṼ)SL, then we have

pk(tk+1) ≈ V(τk)pk−1(tk).

2.6.2 Precondition by aggregation

There are many cases where the FSP matrix AJk , already reduced from A, is still

too large to store or compute. One method to even further reduce the size of the matrix is

aggregation [23].

The method partitions Jk into a small number of disjoint subsets

Jk =
⋃
`

Jk,`.

Let y` be one state representing the whole set XJk,` , and its probability equals the

probability mass of XJk,` :

P (y`, t) =
∑

x∈XJk,`

P (x, t).

Let the aggregation operator E define this conversion from the probability vector of XJk,`

into the probability distribution of Y = {y`}:

p(Y , t) = E · p(XJk , t),

and the disaggregation operator F , which approximates p(XJk,` , t) from p(Y , t), is the

21

right inverse of E:

E · F = IY .

The Markov generator for Y can be reduced from AJk :

B = E ·AJk · F .

It can be shown that B represents a proper master equation: its off-diagonal elements are

nonnegative and each column sums up to 0. The ODEs for the distribution of Y are then


ṗ(Y , t) = B · p(Y , t), t > tk

p(Y , tk) = E · p(XJk , tk)

which we can solve using techniques in Section 2.7, then p(XJk,` , tk+1) can be deduced by

p(XJk , tk+1) = F · p(Y , tk+1), (2.14)

which means that the states in each XJk,` will have the same probability. In practice, if the

shape of the probability distribution is known, then different strategies to disaggregate

from p(Y , t) to p(XJk , t) can be employed instead of (2.14), most notably interpolation.

We refer to [24] for different methods toward this end.

2.7 Approximate the solution

The last stage in each step of the adaptive time-stepping FSP algorithm is to

approximate pk(tk+1) = exp(τkAJk) · pk−1(tk). Obviously, pk is the solution of

ṗ(t) = AJk · p(t) (2.15)

at tk+1, where p(tk) = pk−1(tk). Therefore, standard ODE solution techniques can be

applied, for instance Runge-Kutta methods.

22

Precondition by 2.6.2 Aggregation
(M. Hegland, C. Burden, L. Santoso, S. MacNamara, H. Booth, [23], 2005)
0: Start with XJk and AJk and τk.
1: Divide XJk into XJk,` ’s.
2: Find the operators E and F based on the aggregation.
3: Compute

B = E ·AJk · F ,

and
p(Y , tk) = E · pk(tk).

4: Solve for
p(Y , tk+1) = exp(τkB)p(Y , tk).

5: We have
pk(tk+1) ≈ F · p(Y , tk+1),

or by other methods, as reported in [24].

Here we will address some techniques to solve (2.15) which take advantage of the

fact that AJk is constant over time. Krylov subspace techniques have proved very efficient

for solving this kind of problem for large sparse AJk , by projecting it down to a small

dense matrix, the exponential of which can then be approximated by Padé or Chebyshev

polynomials.

A different approach to solving this problem is the uniformization method, which

truncates the Taylor series expansion of the matrix.

2.7.1 Approximate by uniformization

Even if AJk is preconditioned or not, each step in the variable time-stepping FSP

algorithm ends with approximating the probability vector at time tk+1, in the form of a

matrix exponential multiplied by a vector:

pJk(tk+1) ≈ exp(τkAJk)pJk−1
(tk).

23

We will simplify the notation so that the problem is approximating

exp(τA)v, (2.16)

where the matrix exponential is defined by

exp(τA) =
∞∑
k=0

(τA)k

k!
. (2.17)

The idea behind uniformization is to use a truncation of the series that avoids roundoff

errors. To do so, the method applies the transformation

P = I +
1

α
A, α = max

i
|Aii|,

where P now has nonnegative entries, and then approximates (2.16) using

exp(τA)v = exp(ατ(P − I))v

= e−ατ exp(ατP)v

≈
∑̀
k=0

e−ατ
(ατ)k

k!
P kv.

The last aspect of the uniformization method to consider is choosing the number of

iterations `. Noting that the way P is defined implies that 0 ≤ P ≤ 1 component-wise,

and ‖P ‖1 = 1, from which it can be shown that

∥∥∥∥∥exp(τA)v −
∑̀
k=0

e−ατ
(ατ)k

k!
P kv

∥∥∥∥∥
1

≤ ε

if

1−
∑̀
k=0

e−ατ
(ατ)k

k!
≤ ε.

24

In practice, the integration interval [tk, tk+1] is usually subdivided to avoid overflow issues.

This is often done by choosing a parameter θ ([25] suggests θ = 100) and writing the

solution as

m =
⌈ατ
θ

⌉
, τ̄ =

τ

m
,

exp(τA)v =
(
e−ατ̄ exp(ατ̄P)

)m
v,

then evaluating the last equation by starting from ω = v and iterating

ω ← e−ατ̄ exp(ατ̄P)ω

m times.

Approximate by 2.7.1 Uniformization
(W. Grassmann, [26], 1977
D. Gross, D. Miller, [27], 1984)
0: Start with pk−1(tk), AJk , τk and parameter θ
1: Initialize α = max |diag(AJk)| and

P = I +
AJk

α
.

2: Find parameters m =
⌈
ατ
θ

⌉
and τ̄ = τk

m
.

3: Choose ` so that

1−
∑̀
k=0

e−ατ̄
(ατ̄)k

k!
≤ ε.

4: Start with ω = Pk−1(tk).
5: Iterate

ω ←
∑̀
l=0

e−ατ̄
(ατ̄)l

l!
P kω

m times.
6: Return pk(tk+1) = ω.

2.7.2 Approximate by Krylov-based techniques

One of the most effective methods to approximate the solution in the form of (2.16)

is by using Krylov-based techniques. Given a vector v and matrix A, we define the Krylov

25

subspace of order m to be

Km(A,v) = span{v,Av, . . . ,Am−1v}.

The well-known Arnoldi process produces an orthonormal basis Vm of Km(A,v), and an

upper Hessenberg matrix Hm. The Krylov approximation is then

exp(τA)v ≈ βVm exp(τHm)e1, (2.18)

where β = ‖v‖2 and e1 = (1, 0, . . . , 0)T .

We still need to approximate exp(τHm) in this equation. This can be done using

the Padé approximation, together with scaling and squaring. This is a much cheaper

problem than approximating exp(τA), since it has been shown in experiments that (2.18)

yields a good approximation even when m = 40 or less.

The authors in [11] proposed integrating the Krylov method in the time-stepping

FSP algorithm more than just to approximate Pk(tk+1). They did so by examining the

local error

Γ = 1Tpk(tk+1)

and decreasing the step-size by half and reapplying Krylov method if the condition

Γ > 1− εtk+1

tf
(2.19)

fails to be satisfied. The algorithm keeps halving the step-size until we have (2.19). Only

then, the algorithm moves on to the new time point.

At the new time point, the algorithm only expands the state space if the time-step

was reduced in the last time interval. This guarantees that the algorithm does not waste

time finding and operating with a larger matrix unless it has to.

26

Approximate by 2.7.2 Krylov subspace
0: Start with the Krylov order m, pk−1(tk), AJk , and an initial choice for τk.
1: Apply the Arnoldi process to find Vm and Hm for Km(AJk ,pk−1(tk)).
2: Approximate the solution at tk+1 = tk + τk:

pk(tk+1) ≈ βVm exp(τkHm)e1,

where β = ‖pk−1(tk)‖.
exp(τkHm) is approximated by the Padé approximation, with scaling and squaring.

3: Γ = 1Tpk(tk+1).
4: Stop if Γ > 1− ε tk+1

tf
(see note), otherwise reduce τk by half and return to Step 2.

Note: For the next step in the time-stepping FSP algorithm, only expand the state space
if halving happened in this step.

2.8 Tensor decomposition alternative

As will be shown in the example in Section 2.9, the biggest disadvantage of solving

the CME is the “curse of dimensionality": the size of matrix A is great even when there

are only a few species at play. In such cases, even if A is sparse, operating with it can be

costly. In recent years, a lot of work has been done in decomposing the CME matrix using

tensors, which promises a reduction in storage space.

In this section, we assume the FSP to take the form of a hyper-rectangle

XJk = {0, 1, . . . , n1} × . . .× {0, 1, . . . , nN}. (2.20)

As a slight abuse of notation, we will use A instead of AJ to refer to the submatrix

corresponding to the hyper-rectangle.

As a motivation, we note that under mild conditions the infinitesimal generator A

can be decomposed into a sum of tensor products [28, 29, 30]

A =
M∑
k=1

⊗Ni=1S
i
kM

i
k −⊗Ni=1M

i
k, (2.21)

where each term in the sum corresponds to a chemical reaction, the matrix Sik ∈ Rni×ni is

27

the ‘shifted-diagonal’ matrix corresponding to the change in species i when reaction k

happens, and the diagonal matrix M i
k ∈ Rni×ni that stores the values of i-factor in the

propensity function αk. This allows the matrix A to be stored in O(MN max (ni)) terms

instead of O(Mn1n2 . . . nN) terms of a straightforward sparse storage. Moreover, each

constituent matrix can be subject to further compression techniques that improve further

the memory management. We now turn to some tensor-based techniques that seek to

compress the long probability vector p.

The fact that p is indexed by the multi-dimensional states allows it to be reshaped

into an n1 × . . .× nN -dimensional array (or tensor), making the CME a natural target for

tensor decompositions. The earliest attempt to apply tensor decomposition in the CME

context that we know of is by Hegland and Garcke in 2011 [28], who sought

approximations of the form

p ≈
r∑
j=1

⊗Ni=1p
i, (2.22)

where the number of terms r is called the rank of the tensor decomposition and is made as

small as possible for a prescribed tolerance. The approximation can be stored in

O(rN max (ni)) and this avoids the curse of dimensionality if r is small. About one year

later, Dolgov and Khoromskij proposed a different approach that used the Tensor Train

(TT) format [31]. The TT decomposition breaks p into the 3-dimensional boxes

G0,G1, . . . ,GN where Gi ∈ Rni×ri×ni+1 (with n0 = nN+1 = 1). The numbers ri are called

the TT-ranks of p and each Gi a TT-core. The probability at any state (x1, . . . , xN) is

recovered by

p(x1, . . . , xN) =

r0∑
i0=1

. . .

rN−1∑
iN−1=1

G0(i0, x1)G1(x1, i1, x2) . . .GN(xN , iN),

which is an instance of tensor contraction. The TT approach reduces the O(n1 . . . nN)

storage of the full tensor p into O(Nn2rtt) where n = max{ni} and rtt = max{ri}. If rtt is

small the compression rate is tremendous. The quantized tensor train (QTT) format used

28

in Kazeev et al. [30] takes the compression of the TT approach further by reshaping the

already high-dimensional probability tensor p into an even higher-dimensional tensor with

many virtual dimensions (as opposed to the physical dimensions represented by the

chemical species). The TT decomposition is then applied on top of this reshaped tensor to

achieve a higher compression rate. This is perhaps one of the most fascinating features of

the tensor approaches that can potentially turn the curse of dimensionality into a blessing

(to paraphrase [32]). Finally, we note that the techniques described in this paragraph can

be applied equally to compress the matrix A itself to potentially overcome the memory

explosion issue in solving the CME.

So far we have only mentioned the compression strategies for the large matrix and

vector in the CME using tensor decompositions. The challenge is to design numerical

schemes that maintain the benefits brought by these techniques. Unfortunately, classical

matrix methods do not lend themselves easily to the new formats. The work of Dolgov in

adapting the GMRES method to TT format reveals incompatibility between Krylov

subspace methods and TT decomposition: the TT-ranks of the Krylov vectors given by the

Arnoldi iteration increase even though both A and p have low TT-ranks. There are,

however, promising tools being developed and analyzed for the tensor format such as the

Density matrix renormalization group (DMRG) solver for linear systems in tensor format.

Based on this, implicit time-stepping schemes can be employed to integrate the CME. This

is essentially the approach of Kazeev et al. [30], where the hp-discontinuous Galerkin

scheme is applied successfully in many non-trivial CME problems in quantized TT-format.

Alternatively, classical time-stepping schemes like implicit Euler can be used to form a

global linear system in tensor format to solve once and for all for the snapshots of the

time-dependent probability distribution as done by [33]. Such scheme would have been

costly in traditional matrix-vector format, but becomes much more feasible in tensor

format due to its strong compression ability. We refer to the numerical results in the cited

paper that show the prospects of this new approach.

29

Figure 2.1: A lattice describing all possible states for the stochastic gene toggle model, in
Example 1. The limits in the FSP for protein U is n1, and protein V is n2. The red numbers
are the state indices.

The tensor decomposition approaches to the CME are just a wave in the growing

currents of tensor techniques with wide applications in different fields of science. We refer

to the reviews by [34, 33] and [32].

2.9 Illustrative example

We will consider the stochastic gene toggle model, which is a simple model usually

employed for its interesting properties. This example is meant to showcase how the matrix

used in the CME is generated. There are two species in the model, U and V, and the

production of each has a negative feedback on the production of the other species. The

30

four reactions that U and V participate in and their propensities are: [1, 35]

∅ k1−→ U : α1 = k1

U k2−→ ∅ : α2 = k2[U]

∅ k3−→ V : α3 = k3

V k4−→ ∅ : α4 = k4[V]

The parameters, taken from [36], showcase the feedback between the two species:

k1 = 0.2 + 4
1+[V]3

, k2 = 1.09, k3 = 0.2 + 4
1+[U]3

, k4 = 1. k1 and k3 can be thought of as

functions of [V] and [U], respectively. We set the initial state as x0 = ([U], [V]) = (85, 5).

Since the numbers of U and V can be any nonnegative numbers, we need a bound

so that the FSP matrix is finite dimensional. Let n1 − 1 and n2 − 1 be the upper bounds

on [U] and [V], so there are a total of n1n2 states that we keep track of (because [U] and

[V] can be 0).

Each state of the system consists of the numbers of proteins U and V. To identify

the state with a single number, we need the following indexing formula:

i([U], [V]) = [U] + 1 + n1[V].

The states and reactions are shown in Figure 2.1. The state index i([U], [V]) is shown in

red.

We will now formulate the ODE describing the evolution of the probabilities over

time. The vector form of the ODE is

ṗ(t) = A · p(t),

31

where matrix A ∈ Rn1n2×n1n2 has the block form of

D0 C1 0 . . . 0 0

B D1 C2 . . . 0 0

0 B D2 . . . 0 0

...
...

... . . .

0 0 0 Dn2−2 Cn2−1

0 0 0 B Dn2−1


where

B = diag(k3(0), . . . , k3(n1 − 1)) ∈ Rn1×n1

accounts for the production of V, which can be thought of as an upward transition in

Figure 2.1. On the other hand,

Cm = diag(m · k4, . . . ,m · k4) ∈ Rn1×n1

describes the downward transition of states in row m of Figure 2.1, through the death of

one protein V.

Finally, the diagonal blocks are computed as

D0 = T0 −B

Dm = Tm −B −Cm, m ≥ 1,

where Tm depicts the left and right transitions within row m of Figure 2.1, through the

32

birth or death of one protein U:

Tm(i, j) =



−k1(m) i = j = 1

−k1(m)− (j − 1) · k2 i = j > 1

(j − 1) · k2 j = i+ 1

k1(m) j = i− 1

The gene toggle model is well-known for its bistability: there are two different stable

steady modes that the system can converge to, which can be seen easily using the

SSA-driven FSP method [1], shown in the last row of Figure 2.2.

The first row in Figure 2.2 shows the distributions from applying the SSA with 105

trajectories. All of the trajectories converge to only one of the two steady states. The

reason is transparent: the result from the SSA-driven FSP method informs us that the

probabilities of the states in the second mode are between 10−8 and 10−13. Therefore many

more trajectories would be needed for the SSA to reach bimodality. This is shown more

clearly when 108 trajectories are simulated by the SSA, as shown in the second row of

Figure 2.2.

Therefore this example shows that in some cases, solving the CME by using the

FSP can be both more accurate and much faster than applying the SSA or other stochastic

methods.

2.10 Softwares

Here we discuss some softwares and packages that illustrate the methodology of the

FSP and serve as an efficient means to solve the CME.

2.10.1 FSP Toolkit

FSP Toolkit is a MATLAB software for solving the CME for two species using the

FSP, which can be found at

33

Figure 2.2: Probability distributions (logscale) of the stochastic gene toggle after 2s (left
column) and 30s (right column) using SSA with 105 trajectories (first row), SSA with 108

trajectories (second row), and SSA-driven FSP [1] (third row).

34

http://cnls.lanl.gov/∼munsky/Software.html

Ref. [18] describes the numerical method in detail. The initial state space is defined

by a set of nonlinear inequalities, and it is expanded by applying r-step reachability and

multiple absorbing states. A number of stochastic phenomena involving two species in

biological systems are illustrated in the software, including activation through linear

regulation, activation with a convex or concave function, and toggle switch. The toolkit is

very well explained and therefore recommended as a valuable resource for people new to

the FSP approach.

2.10.2 CMEPy

CMEPy is a Python package for solving the CME, which can be downloaded and

installed at

http://fcostin.github.io/cmepy/index.html

The program expands the state space by r-step reachability. It can also solve for the

case where the propensities are time-dependent, but only when a separation of variables

can be applied:

αk(x, t) = φk(x)θ(t).

2.10.3 Expokit

As mentioned in Section 2.7, Expokit is one of the most efficient software to

calculate the matrix exponential of either small dense or very large sparse matrices. The

package is written in Fortran and MATLAB [37], and can be found at

http://www.maths.uq.edu.au/expokit/

It is the basis of ongoing solution techniques of the FSP.

35

2.11 Discussion

The FSP is an especially effective method in a number of gene expression regulation

problems for several reasons. First of all, there are few species involved and upper limits

on these species numbers are usually given either from experimental data or theoretical

biology, implying that the size of CME may occasionally be manageable. Secondly, the

goal in these problems is usually to find the model that explains the experimental data,

and to find the model parameter (i.e. a vector of reaction rates) that results in the

probability distributions that best fit the data at different times. Since thousands or even

millions of different model parameters have to be computed and compared, the probability

distributions have to be solved efficiently and fast, in which case the FSP has an advantage

over kinetic Monte Carlo simulations, which require large numbers of simulations. We refer

to [38] which contains a number of good examples where the FSP is applied in real-life

gene expression regulation problems.

However, the “curse of dimensionality" makes solving the CME numerically difficult

if not impossible in the case where there are many species. An example for such a case is

the regulation of protein p53 [39], where there are six species of interest, interacting with

each other through 11 reactions. A bound B is set to be the maximum number of

molecules of each species that the cell can contain. It is then obvious that the number of

states that the system can be in is roughly B6, where B can be thousands. We then end

up with a very large, although sparse, matrix A for the CME. In practice, when we solve

the CME using real parameters as reported in [39], the probability mass requires a

projection of over 4 million states and at each time point, expanding the state space to the

next time step would explode the projection up to over 15 million states.

When such a huge system is encountered, the FSP method fails and the best

numerical methods to employ are the SSA and other Monte Carlo methods.

36

2.12 Conclusion

The amount of research efforts in the last few years that built on the finite state

projection method is the most convincing evidence of the importance of the method in

solving the chemical master equation. Variants of the original algorithm have led to

tremendous improvements. This chapter offered a review of these methods in a systematic

fashion. We outlined the core ideas behind the variants, and highlighted similarities and

differences between them. We note that in addition to biological applications, the FSP is

found useful in other areas as well [40].

37

CHAPTER 3

ANALYSIS OF INEXACT KRYLOV SUBSPACE METHODS

This chapter is based on work published in Mathematics and Computers in

Simulation [41].

3.1 Introduction

Here, we seek to generalize the Finite State Projection and develop theoretical

background for this reduction technique.

Given a large sparse nonsymmetric matrix A ∈ Rn×n and vector p0 ∈ Rn, letting

v = p0 and taking m� n Arnoldi steps with a starting vector v1 = v/‖v‖, where ‖ · ‖

means the 2-norm, we obtain an orthonormal basis Vm = [v1, . . . ,vm] ∈ Rn×m of the

Krylov subspace Km(A,v) = span{v,Av, . . . ,Am−1v}, and an upper Hessenberg matrix

Hm ∈ Rm×m that satisfy

AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m, (3.1a)

Hm = V T
mAVm, (3.1b)

where em = (0, . . . , 0, 1)T , and Hm ∈ R(m+1)×m is Hm augmented with hm+1,me
T
m under its

last row. The standard Krylov approximation to the matrix exponential takes the form

exp(τA)v ≈ Vm exp(τHm)βe1, e1 = (1, 0, . . . , 0)T , β = ‖v‖. (3.2)

It is well-known that (3.1) is also the cornerstone for building very efficient Krylov

subspace solution techniques for other problems such as eigenvalue problems or linear

systems. In the latter, there has been recent interest in transitioning from exact to inexact

38

(or relaxed) matrix-vector products in the Arnoldi process [42, 43, 44], either out of

necessity or deliberately, trading accuracy for speed. It is customary to model these

inexact products as

Avk ≈ (A+Ek)vk, (3.3)

where Ek is some error matrix that varies at each invocation, and note that setting Ek = 0

recovers the exact evaluation. To make the difference clear, we refer to the classical

method as the exact Arnoldi and it is not meant to imply exact arithmetic. The foremost

implication of such a relaxation is that the classical Arnoldi relationship (3.1) does not

hold anymore, but Simoncini and Szyld [44] made the key observation that we end up with

(A+ Em)Vm = VmHm + hm+1,mvm+1e
T
m, Em =

m∑
k=1

Ekvkv
T
k , (3.4)

which is similar to (3.1), except that Vm, which still remains orthonormal, is now a basis of

a Krylov subspace obtained by a perturbed A. When we use the computed Vm and Hm

from (3.4) in GMRES for instance, classical error bounds do not apply anymore. However,

from theoretical and experimental evidence (such as [45]), the method can withstand cases

where the norm of the perturbation Em grows very large.

The analysis of Simoncini and Szyld [44] provided insights into inexact GMRES for

solving a linear system Ax = b, but it has so far remained unclear how inexactness affects

the Krylov approximation (3.2). Since we now have (3.4) instead of (3.1), we also lose

classical error bounds on the matrix exponential (e.g., Gallopoulos and Saad [46],

Saad [47], Hochbruch and Lubich [48]). Thus our study here fills a gap in the literature by

looking at the error in the inexact Krylov counterpart of (3.2). We additionally offer

another related way of assessing the accuracy by investigating the defect or residual [49]

39

from the fact that (3.2) arises when solving a system of linear ODEs of the form


p′(t) = Ap, t ∈ [0, tf]

p(0) = p0, initial condition.
(3.5)

It is worth recalling that, in the exact case, the effectiveness of approximating

exp(A)v by projecting it onto Km(A,v) hinges on the fact that all polynomials of A of

degree ≤ m− 1 can be calculated exactly through Hm, or more precisely,

qm−1(A)v = Vmqm−1(Hm)βe1,

where qm−1 is any polynomial of degree ≤ m− 1. By the same reasoning as in the exact

case (e.g., Saad [47, Lemma 3.1]), it can be shown from (3.4) that, for the same polynomial

qm−1,

qm−1(A+ Em)v = Vmqm−1(Hm)βe1.

The implication of all this is that the inexact Krylov subspace method for Km(A,v) with

the relaxation matrices Ek, k = 1, . . . ,m, can be seen as the exact Krylov subspace method

for Km(Ã,v) with

Ã = A+ Em = A+
m∑
k=1

Ekvkv
T
k ,

which is another simple way to understand the method.

The rest of the chapter is organized as follows: Section 3.2 gives some background

on modeling biochemical reactions. Section 3.3 analyzes the residual (or defect) of the

inexact Krylov method both when the ODE problem is homogeneous or nonhomogeneous,

with two different approaches considered for the latter. Section 3.4 analyzes the error and

includes a special treatment that exploits the structure of the matrix when it arises from

stochastic processes such as that involved in the CME. Section 3.5 reports some numerical

40

experiments. Section 3.6 finally wraps the presentation with some concluding remarks.

3.2 Inexact chemical master equation - a motivation

In a biological cell containing different molecular species undergoing various

chemical reactions, the state is a vector of integers counting the different species of

molecules. Such a discrete formulation is prompted by key regulatory molecules that exist

in small numbers, making a continuous formulation (via concentrations) inappropriate.

The counter of a species goes up or down when a chemical reaction occurs, depending on

whether the reaction produces or consumes that species. Starting from a particular state,

the cell will transition to different states as reactions happen. The CME depicts the

evolution of the system’s probability distribution, which characterizes the probability of

finding the cell in a given state at a given time. The challenge here is that even with

simple biochemical models having 4 or 5 reaction channels and a relatively low count of

each molecular species, there can be millions of possible states, and the variety of models

means that calculations cannot rely on generic simplifications.

The finite state projection (FSP) algorithm [10] can be thought of as a model

reduction method to cope with the huge size of the CME, and we outline its matrix form

here because it vividly illustrates how inexactness comes into play. With J = {1, . . . , k},

and k being the cardinality of J , let

A =

 AJ ∗

∗ ∗

 ∈ Rn×n,

i.e., AJ is a k × k submatrix of the true operator A. The FSP algorithm takes

p(tf) = exp(tfA)p0 ≈

 exp(tfAJ) 0

0 0


 pJ(0)

0

 . (3.6)

Note that p0 = p(0) is also truncated according to J . Munsky and Khammash [10]

41

assessed the loss of the probability mass and gave a theoretical justification of the merit of

this approach from a probabilistic point of view. We now recast the analysis in the

framework of inexact methods.

With J now an arbitrary subset of {1, . . . , n}, and the corresponding submatrix AJ

padded with zeros as necessary, the ‘truncation’ can be formalized as

A = AJ +RJ ,

where RJ is the error matrix from the truncation. Then (3.6) is in turn further

approximated by an inexact Krylov method for the matrix exponential, which we saw

previously means that the Arnoldi process for approximating the solution uses inexact (or

relaxed) matrix-vector products of the form

AJv ≈ (AJ +EJ)v,

where EJ models some error in the product. Combining with the truncation, we get

Av ≈ (A−RJ +EJ)v,

so that E = −RJ +EJ captures both error terms. In particular, if EJ = 0, only the

truncation error is in effect, whereas if RJ = 0, there will only be the error from the

relaxed matrix-vector product. From now on, our theoretical analysis will simply assume

that the true matrix A interacts through the inexact evaluation Avk ≈ (A+Ek)vk

without regard to the real source of the error.

42

3.3 Bounds on the residual

Given the differential equation (3.5), consider an approximation pm(t) ≈ p(t), then

in the terminology of ODEs the ‘residual’ or ‘defect’ is defined as

rm(t) = p′m(t)−Apm(t). (3.7)

This definition reminds what happens when approximating the solution to a linear system

Ax = b. Take GMRES, which uses the approximation xm = x0 + Vmym, where x0 is an

initial guess, ym =H
†
mβe1, with Vm and Hm arising from the Arnoldi process for

Km(A, r0), and denoting r0 = b−Ax0, β = ‖r0‖, and H
†
m the pseudo-inverse of Hm.

Applying (3.4), the inexact GMRES method ends up with (the norm of) the computed

residual

r̃m = r0 − Vm+1Hmym, (3.8)

while the true residual satisfies

rm = b−A(x0 + Vmym) = r̃m + EmVmym. (3.9)

From (3.8) and (3.9), and the fact that EmVm = [E1v1, . . . ,Emvm] because Vm is

orthonormal, there is an unknown residual gap that satisfies

δm = ‖rm − r̃m‖ = ‖EmVmym‖ = ‖[E1v1, . . . ,Emvm]ym‖. (3.10)

The inexact solver still reports ‖r̃m‖ as the estimate of the residual, but the residual

gap (3.10) is not obvious, and so the reliability of the final solution is not guaranteed.

Simoncini and Szyld [44] obtained the bound (see also [50, 45]):

δm ≤
m∑
k=1

|η(m)
k | · ‖Ekvk‖ ≤

m∑
k=1

|η(m)
k | · ‖Ek‖, ym =H

†
mβe1 = (η

(m)
1 , η

(m)
2 , . . . , η(m)

m)T .

43

Returning to the differential equation (3.5) where the residual of an approximation

is defined by (3.7), and using (3.2) based on the exact Arnoldi process, we get the Krylov

approximation pm(τ) = Vm exp(τHm)βe1 that leads to

p′m(τ)−Apm(τ) = p′m(τ)−AVm exp(τHm)βe1

= Vm exp(τHm)Hmβe1 − [VmHm + hm+1,mvm+1e
T
m] exp(τHm)βe1

= −βhm+1,m

(
eTm exp(τHm)e1

)
vm+1.

Note that it is a variant of this estimate (with some scaling) that Expokit uses so far to

great effect to monitor the accuracy. We define the computed residual as

r̃m(τ) = −βhm+1,m

(
eTm exp(τHm)e1

)
vm+1,

because this would still be the economical quantity (or a related one from it) used to

estimate the true residual. As we shall see in the following section, with the inexact

Arnoldi process (3.4), the true residual in the ODE problem becomes

rm(τ) = r̃m(τ) + EmVm exp(τHm)βe1,

which is reminiscent of (3.9), but with ym(τ) = exp(τHm)βe1 instead of the least squares

solution ym =H
†
mβe1. Simoncini and Szyld [44] refined their bounds by exploiting

properties satisfied by the components of ym through Givens rotations in the case of

GMRES. Our analysis will derive bounds without assuming those properties since Givens

rotations are not involved in the case of the matrix exponential.

44

3.3.1 Homogeneous case

The Krylov technique for solving (3.5) is typically done by using the integration

scheme 
p(0) = p0

p(tk+1) = exp(τkA)p(tk),

(3.11)

with some strategy for chosing the stepsizes τk = tk+1 − tk. The problem remains how to

effectively approximate exp(τA)v given τ and v.

Now, using (3.2) based on the inexact Arnoldi process (3.4), the true residual of the

resulting Krylov approximation pm(τ) = Vm exp(τHm)βe1 satisfies

rm = p′m −Apm

= (Vm exp(τHm)βe1)′ −AVm exp(τHm)βe1

= Vm exp(τHm)Hmβe1 − (VmHm + hm+1,mvm+1e
T
m − EmVm) exp(τHm)βe1

= −hm+1,m(eTm exp(τHm)βe1)vm+1 + EmVm exp(τHm)βe1

= r̃m + EmVm exp(τHm)βe1,

where r̃m is the computed residual defined earlier. The dependency on the time τ will not

be made explicit unless there is a risk of ambiguities. The quantity

δres
m = ‖rm − r̃m‖ = ‖EmVm exp(τHm)βe1‖ (3.12)

is the residual gap between rm and r̃m. It depends on the relaxation matrices Ek and

therefore cannot be computed in a straightforward manner. From the derivation above, we

45

can bound the norm of the true residual as

‖rm‖ ≤ ‖r̃m‖+ δres
m . (3.13)

When all matrix-vector products are exact, i.e., all Ek = 0, then Em = 0 and

δresm = 0 as expected. Therefore with ym = exp(τHm)βe1, the residual gap can be written

as

δres
m = ‖EmVmym‖ = ‖[E1v1, . . . ,Emvm]ym‖,

and similarly to [44, Prop. 4.1], if we write ym = (η
(m)
1 , . . . , η

(m)
m)T , the following upper

bound on the residual gap holds:

δres
m ≤

m∑
k=1

|η(m)
k |.‖Ek‖, (3.14)

and furthermore we have the following result:

Proposition 3.3.1. Given ε > 0, if ‖Ek‖ ≤
εres

mβ‖ exp(τHm)‖
, k = 1, . . . ,m, then we have

δresm ≤ εres (3.15)

and therefore ‖rm‖ ≤ ‖r̃m‖+ εres.

Proof. We have |η(m)
k | ≤ ‖ym‖ = ‖ exp(τHm)βe1‖ ≤ β‖ exp(τHm)‖, and so combining the

condition on ‖Ek‖ with the inequality (3.14) gives (3.15). The bound on ‖rm‖ then follows

naturally from the relation ‖rm‖ ≤ ‖r̃m‖+ δres
m .

Remark 3.3.2. As Giraud et al. [50] pointed out in the context of inexact GMRES,

Proposition 3.3.1 does not allow us to anticipate the relaxation matrices Ek in advance

because of the dependence on Hm. It can however be used in a postmortem manner to

check if the error condition is satisfied.

46

3.3.2 Nonhomogeneous case

Bounding the residual gap via the ϕ function

It is well known (see, e.g., Expokit [37]) that the numerical solution to the system of

nonhomogeneous ODEs


p′(t) = Ap(t) + b

p(0) = p0

(3.16)

with constant A ∈ Rn×n and b ∈ Rn, can be found using the integration scheme


p(0) = p0

p(tk+1) = τkϕ(τkA)[Ap(tk) + b] + p(tk)

(3.17)

where ϕ(τA) =
∑∞

i=0
(τA)i

(i+1)!
[51, Chap. 2.1, Chap. 10.7]. This integration scheme

circumvents using the representation of the analytical solution of (3.16),

p(t) = exp(tA)p0 + tϕ(tA)b, which would need both Km(A,p0) and Km(A, b) instead of

only one Krylov subspace as implied in (3.17). Using this scheme, we can derive a result

similar to Proposition 3.3.1, but this can be avoided by the augmented approach shown

below.

Bounding the residual gap via an augmented matrix exponential

An indirect way to solve (3.16) takes root in the analytical solution

p(t) = exp(tA)p0 + tϕ(tA)b, and has proved convenient in other circumstances such

as [52, 53]. Define the augmented matrix

A+ =

A b

0 0

 ∈ R(n+1)×(n+1),

47

then we have

exp(tA+) =

exp(tA) tϕ(tA)b

0 1

 ,

so that the solution can be fetched as p(t) =
[
exp(tA+)p+

0

]
1:n

with p+
0 =

p0

1

 .

The problem now amounts to getting exp(tA+)p+
0 . Transforming the problem back

to the form exp(tA+)p+
0 not only inherits the analysis done in the homogeneous case in an

elegant way, but also enables seamless code re-use. Furthermore, the inexactness in the

matrix-vector product with A+ is only triggered from A through

A+ +E+
k =

A+Ek b

0 0

 ,

and so results can nicely be recast in terms of Ek. For this reason, we will not dwell any

further on the nonhomogeneous case in the rest of our presentation.

3.4 Bounds on the error

3.4.1 General upper bound on the error

As pointed out in the introduction, the inexact method for Km(A,v) with the

perturbation matrices Ek, k = 1, . . . ,m, can be seen as the exact method for Km(Ã,v) with

Ã = A+ Em = A+
m∑
k=1

Ekvkv
T
k .

Therefore if we define

ε̃m = ‖ exp(τÃ)v − Vm exp(τHm)βe1‖

= ‖ exp(τ(A+ Em))v − Vm exp(τHm)βe1‖,

48

then bounds on ε̃m have been given in the literature of exact Krylov methods [46, 47, 48].

However, our main focus is not so much on the bounds on ε̃m, but on the true error

εm = ‖ exp(τA)v − Vm exp(τHm)βe1‖.

The relationship between εm and ε̃m is straightforward from the triangle inequality

εm ≤ ‖ exp(τA)v − exp(τÃ)v‖+ ‖ exp(τÃ)v − Vm exp(τHm)βe1‖ = ε̃m + δerrm ,

where we define the error gap

δerr
m = ‖ exp(τA)v − exp(τÃ)v‖. (3.18)

With upper bounds on ε̃m ready in hand, it remains to get good bounds on δerr
m , which

turns out to be a matrix perturbation analysis that we discuss next.

3.4.2 Bounding the error gap

In [51, Chap. 10.2], Higham obtained

exp(τÃ) = exp(τA) +

∫ τ

0

exp((τ − s)A)Em exp(sA)ds+O
(
‖τEm‖2

)
. (3.19)

Post-multiplying each side by v, we get

exp(τÃ)v = exp(τA)v +

∫ τ

0

exp((τ − s)A)Em exp(sA)vds+O
(
‖τEm‖2

)
.

Hence

δerr
m ≤

∫ τ

0

‖ exp((τ − s)A)‖‖Em‖‖ exp(sA)‖‖v‖ds+O(‖τEm‖2),

which leads directly to the following statement.

49

Theorem 3.4.1. For any arbitrary A, v and Ã = A+ Em from the inexact Krylov

subspace method, we have

δerrm = ‖ exp(τA)v − exp(τÃ)v‖ ≤ βh2
A‖τEm‖+O(‖τEm‖2),

where β = ‖v‖ and hA = max
s∈[0,τ]

‖ exp(sA)‖ is the so-called ‘hump’ on [0, τ].

When A originates from a Markov chain as is the case in the CME, (i.e., with

nonnegative off-diagonal elements, negative diagonal elements and zero column sums) it is

known that ‖ exp(sA)‖1 = 1,∀s ≥ 0, (see for example [51, section 2.3]). We can then draw

from (3.19) that

‖ exp(τA)v − exp(τÃ)v‖1 ≤
∫ τ

0

‖ exp((τ − s)A)‖1‖Em‖1‖ exp(sA)‖1‖v‖1ds+

O(‖τEm‖2
1).

and using in addition the fact that a probability vector has ‖v‖1 = 1, we get the following

simplified result.

Theorem 3.4.2. Let A be the transition rate matrix of a Markov chain, then given a

probability vector v and the perturbed Ã = A+ Em from the inexact Krylov subspace

method, we have

‖ exp(τA)v − exp(τÃ)v‖1 ≤ ‖τEm‖1 +O(‖τEm‖2
1).

3.4.3 Series expansion of the error

In [47], Saad derived the following series expansion of the error produced by the

exact Krylov subspace method

exp(τA)v − Vm exp(τHm)βe1 = τhm+1,m

∞∑
k=1

eTmϕk(τHm)βe1(τA)k−1vm+1, (3.20)

50

of which the first term in the series was argued to be a good estimate of the error when the

stepsize τ is small enough. Here, the functions ϕk are defined as

ϕk(x) =
∞∑
i=0

xi

(i+ k)!
, ϕk(0) =

1

k!
,

which implies that

0 ≤ ϕk(x) ≤ ϕk−1(x)

k
≤ · · · ≤ ex

k!
, if x ≥ 0.

In the context of the inexact Krylov subspace method, we can use (3.4) and

substitute A for Ã = A+ Em in (3.20), but that will bring up the unwieldy issue of the

error gap again. Instead, we generalize the expansion in the following statement that

reveals how the terms involving Em break out in a strikingly neat way.

Theorem 3.4.3. The (true) error in the inexact Krylov subspace method for the matrix

exponential has the series expansion

exp(τA)v − Vm exp(τHm)βe1

=
∞∑
k=1

(τA)k−1
[
τhm+1,m

(
eTmϕk(τHm)βe1

)
vm+1 − τEmVmϕk(τHm)βe1

]
.

(3.21)

Proof. As in the proof of [47, Theorem 5.1], define the error in approximating ϕk(A)v by

projecting it onto Vm as skm = ϕk(A)v − Vmϕk(Hm)βe1.

51

From the definition of ϕk and the fact that ϕk(0)v = Vmϕk(0)βe1, we directly have

ϕk(A)v = Aϕk+1(A)v + ϕk(0)v

= A[Vmϕk+1(Hm)βe1 + sk+1
m] + ϕk(0)v

= Vm[ϕk(0)βe1 +Hmϕk+1(Hm)βe1] + hm+1,mvm+1e
T
mϕk+1(Hm)βe1

− EmVmϕk+1(Hm)βe1 +Ask+1
m

= Vmϕk(Hm)βe1 + hm+1,mvm+1e
T
mϕk+1(Hm)βe1

− EmVmϕk+1(Hm)βe1 +Ask+1
m ,

resulting in another expression for skm through a recurrence

skm = hm+1,m

(
eTmϕk+1(Hm)βe1

)
vm+1 − EmVmϕk+1(Hm)βe1 +Ask+1

m .

Using these expressions of the error terms gives

exp(A)v − Vm exp(Hm)βe1 = s0
m

= hm+1,m

(
eTmϕ1(Hm)βe1

)
vm+1 − EmVmϕ1(Hm)βe1 +As1

m = . . .

= hm+1,m

j∑
k=1

(
eTmϕk(Hm)βe1

)
Ak−1vm+1 −

j∑
k=1

Ak−1EmVmϕk(Hm)βe1 +Ajsjm,

in which

‖Ajsjm‖ ≤ ‖A‖j‖sjm‖ ≤ ‖A‖jβ (ϕj(‖A‖) + ϕj(‖Hm‖)) ≤ β
(
e‖A‖ + e‖Hm‖

) ‖A‖j
j!

converges to 0 as j →∞. Taking this into account in the sums above, we get

exp(A)v − Vm exp(Hm)βe1

=
∞∑
k=1

Ak−1[hm+1,m

(
eTmϕk(Hm)βe1

)
vm+1 − EmVmϕk(Hm)βe1].

52

Finally, if we rescale the inexact Arnoldi relation in (3.4) with the stepsize τ , we

get (3.21).

3.4.4 Exactness in the case of truncated approximations

The analysis so far has not made any assumption on the structure of A, v or Ek. In

this section, we show a counter-intuitive result that, when Ek arises from a truncated

approximation of a special form of the matrix A, the inexact scheme can be exact.

Consider a banded matrix, and assume that v = e1 = (1, 0, . . . , 0)T . The

multiplication of A with v will therefore not involve the contribution of elements located

in the trailing submatrices of A. Generalizing this observation, we get the following result

that arises frequently in the CME discussed in section 3.2 and is therefore of wide interest.

Theorem 3.4.4. Let l ≥ 0, k − l ≥ 2, assume that

A =

Ak B

C D

 ∈ Rn×n,

where

Ak ∈ Rk×k, (Ak)ij = 0 if i > j + l,

and

C ∈ R(n−k)×k, (C)ij = 0 if j ≤ k − l − 1.

That is, A visually has the form:

53

Also assume that v = e1 and the relaxation matrices are identical,

E =

 0 −B

−C −D

 ∈ Rn×n.

Then if m ≤M = max{j : (j − 1)l + 1 ≤ k − l − 1}, where m is the dimension of the basis

built by the inexact Arnoldi algorithm based on matrix-vector products with A+E, we have

Em = 0,

so that

exp(τA) = exp(τÃ),

and

δerrm = 0.

Proof. Observe first that, because of the special forms of A and v, the vj produced by the

Arnoldi process is such that

(vj)i = 0, i > (j − 1)l + 1, 1 ≤ j ≤M.

This means that, up to j = M , the exact Arnoldi process (where multiplications are

performed with A) and the inexact Arnoldi process (where they are instead performed

with A+E) coincide, due to the fact that the multiplications only depend on the first

k − l − 1 columns of A and A+E, which are the same.

Because the first k − l − 1 columns of E are zero, and only the first

(j − 1)l+ 1 ≤ k− l− 1 elements of the vectors vj are nonzero for 1 ≤ j ≤ m ≤M , we have

54

Evj = 0, and therefore

Em =
m∑
j=1

Evjv
T
j = 0.

Hence A = Ã and naturally δerr
m = ‖ exp(τA)v − exp(τÃ)v‖ = 0.

Remark 3.4.5. The analysis in Theorem 3.4.4 will explain results apparently intriguing in

the experiments, as the reader will soon discover in the following section. Note however

that it only works for v = e1. Since the step-by-step integration scheme (3.11) is typically

used, v will not remain e1 past the first step, in which case the analysis of δerr
m done in the

previous section takes effect.

Remark 3.4.6. Even though this theorem shows that we have Em = 0 and

exp(τA) = exp(τÃ),∀τ , with a Krylov subspace of small dimension, this does not mean

that the inexact Krylov approximation has no error. As shown in Theorem 3.4.3, even if

Em = 0, the expansion collapses to (3.20), which is generally not zero.

3.5 Numerical examples

We illustrate some of the theoretical results using three examples. The first two

examples illustrate how Proposition 3.3.1 can be applied, by first showing how the

relaxation scheme works according to the proposition, and secondly how the scheme fails

when the condition of the proposition is not satisfied. The third example is a special one to

demonstrate the peculiar behavior hinted in Remark 3.4.5: the scheme still works well even

though the (sufficient) condition of Proposition 3.3.1 is not satisfied due to the reason

given in Theorem 3.4.4. The examples were implemented in MATLAB.

We recall the following quantities that were given in the text to assess the inexact

55

method:

true residual = ‖rm‖ = ‖VmHmym −AVmym‖

computed residual = ‖r̃m‖ = |hm+1,me
T
mym|

residual gap = δres
m = ‖rm − r̃m‖ = ‖EmVmym‖

true error = εm = ‖ exp(τA)p0 − Vmym‖,

where ym = exp(τHm)βe1, with a given τ , and with Hm and Vm constructed by the

inexact Krylov method using an initial given vector v with β = ‖v‖.

3.5.1 Example 1 - Illustration of the residual gap when Proposition 3.1 is

satisfied

90 95 100 105 110

Truncation index

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

‖
E
‖

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

δ
re
s

m

Truncation ‖E‖
Bound of Prop 3.1

Residual gap δ
res
m

Tolerance ǫ
res

Figure 3.1: Example 1: when the principal 100 × 100 submatrix becomes contained in the
truncated matrix, the bound condition of Proposition 3.3.1 is satisfied, resulting in δres

m

within the tolerance.

56

We take a 1000× 1000 matrix, where the principal 100× 100 submatrix is uniformly

distributed in [0, 1], and entries outside this submatrix are uniformly distributed in

[0, 10−6]. The initial vector is v = (10−3, . . . , 10−3)T . We take the time point τ = 10−3, and

tolerance on the residual gap εres = 10−3. The Krylov subspace is chosen to be of

dimension m = 15.

For the inexact scheme, we define Ak to be a 1000× 1000 matrix containing the

principal k × k submatrix of A and 0 outside. Inexact multiplications with A are then

performed with Ak instead. Observations are shown in Fig. 3.1. Since the key entries of A

are in the principal 100× 100 submatrix, it s clear that if k < 100, then Ak will leave out

vital entries and inflate the error matrix E = A−Ak, which in turn will cause the residual

gap to be large. However, if k ≥ 100, then ‖E‖ ≤ εres

mβ‖ exp(τHm)‖ , which is the bound

condition in Proposition 3.3.1, and therefore δres
m ≤ εres as guaranteed there. Fig. 3.1

illustrates this with the truncation index 90 ≤ k ≤ 110.

3.5.2 Example 2 - Illustration of the residual gap when Proposition 3.1 is not

satisfied

We now consider another 1000× 1000 matrix, where the main diagonal is uniformly

distributed in [0, 1], and the off-diagonal entries are uniformly distributed in [0, 10−6]. As in

the first example, we keep v = (10−3, . . . , 10−3)T , τ = 10−3, εres = 10−3, and m = 15. The

inexact setup is also the same, with inexact matrix-vector products against A performed

using Ak, where Ak contains the k × k principal submatrix of A and zeros elsewhere.

As Fig. 3.2 shows, in this example, the residual gap δres
m is consistently above the

tolerance on the residual gap εres even when k is almost the size of A. The reason for this

is that since the diagonal elements are significant to be omitted, truncating even only one

or two of them would make ‖E‖ large and not satisfy the bound condition of

Proposition 3.3.1.

The conclusion to draw from these two examples is that when inexactness is

achieved in a reasonable way, the inexact Krylov method works well. Depending on the

57

900 910 920 930 940 950 960 970 980 990

Truncation index

10
-4

10
-3

10
-2

10
-1

10
0

‖
E
‖

10
-4

10
-3

10
-2

10
-1

10
0

δ
re
s

m

Truncation ‖E‖
Bound of Prop 3.1

Residual gap δ
res
m

Tolerance ǫ
res

Figure 3.2: Example 2: The bound condition of Proposition 3.3.1 is never satisfied, and δres
m

is greater than the tolerance.

particular problem at hand, one can decide how to relax the matrix-vector multiplications

to satisfy Proposition 3.3.1, in which case the residual gap can be controlled by εres,

ensuring that the computed residual ‖r̃m‖ serves as a reliable approximation of the true

residual ‖rm‖.

3.5.3 Example 3 - Illustration of the error and residuals when Theorem 4.4 is

satisfied

We consider the CME arising from the Michaelis-Menten enzyme kinetics, which is

a well known system of biochemical reactions in cell biology. There are four species:

substrates (S), enzymes (E), enzyme-substrate complexes (ES) and products (P),

interacting according to the three chemical reactions listed in Table 3.1, and we took

reaction rates as in [54]. The state vector is x = ([P], [E], [S], [ES])T , where [X] is the

58

0 500 1000

0

200

400

600

800

1000

1200

n=1326; nnz=5150

Figure 3.3: Sparsity pattern of the matrixA from the CME of the Michaelis-Menten enzyme
kinetics in Example 3.

current number of copies of species X. If we start with x1 = (0, 50, 50, 0)T , i.e., a maximum

of 50 substrates, the resulting matrix A of the underlying CME is of dimension n = 1,326.

We use MATLAB’s expm command to check for correctness. Fig. 3.3 shows the sparsity

pattern of A.

Table 3.1: Michaelis-Menten reactions and propensities.

reaction propensity rate constant (s−1)
1. E + S κ1−→ ES α1 = κ1 [E] [S] κ1 = 1.0

2. ES κ2−→ E + S α2 = κ2 [ES] κ2 = 1.0

3. ES κ3−→ E + P α3 = κ3 [ES] κ3 = 0.1

Since we know that the system starts in state x1, the initial probability vector is

p0 = e1, and in the spirit of (3.6), we compute the approximation

exp(τA)p0 ≈ exp(τAJ)p0,

59

230 235 240 245 250 255 260

Truncation index

0

0.2

0.4

0.6

0.8

1

T
ru
e
er
ro
r
ǫ
m

×10
-5

0

0.005

0.01

0.015

0.02

0.025

R
e

s
id

u
a

ls

True error ǫm
Residual ‖rm‖
Residual gap δ

res
m

Tolerance ǫ
res

Figure 3.4: Example 3: The true error (on the left y-axis), and the true residual and residual
gap (on the right y-axis)

where AJ is a padded truncation of A. We simply take a principal submatrix instead of

the more general scheme where J can be an arbitrary subset of {1, . . . , n}. There is no loss

of generality because it can be assumed that there has been a reordering P TAP where P

is an appropriate permutation matrix. Our aim is to test the theory developed here and

not really to craft efficient implementation details with elaborate sparse data structures

that are best communicated elsewhere. We vary |J |, the cardinality of J that determines

the size of the truncation from 230 to 280, so that |J | ranges from about 17% to 21% of n

in this example. We take v = e1, τ = 10−2, and m = 30.

Figs. 3.4 and 3.5 show the results. We see on the first plot a decrease of ‖Em‖ as

the truncation size |J | increases. This example has the particularity of illustrating the

phenomenon described in §3.4.4, where Em becomes a zero matrix for a big enough

truncation size |J |, even though |J | is still only about 20% of n. Because of this

60

230 235 240 245 250 255 260

Truncation index

10
-6

10
-4

10
-2

10
0

10
2

10
4

‖
E
‖

0

50

100

150

200

250

300

350

400

450

500

‖
E
m
‖

Truncation ‖E‖
Bound of Prop 3.1

Perturbation ‖Em‖

Figure 3.5: Example 3: ‖E‖ and ‖Em‖; computed as |J | increases from 230 to 280; v = e1,
τ = 10−2, and m = 30

phenomenon, the residual gap becomes 0, as the left plot shows. These results agree with

the theory presented here. Note also on the first plot how the stair functions change in

unison, illustrating the connection between the residuals and the error.

3.6 Conclusion

In this chapter, we have analyzed inexact Krylov methods for approximating the

action of the matrix exponential and provided insights into why they can be successful. We

obtained results that in hindsight connect well with previous results, but it is worth

recalling that exactly how such inexact methods related to previous works was unclear at

the beginning. The rigorous treatment performed in this work made the connection clear

and established the details. This therefore fills a gap in the literature. We also brought

into focus a particularly attractive aspect of inexact methods: they set a framework that

61

encompasses model reduction methods in a generic way. We gave the important

application of solving the CME as an example to motivate this viewpoint, with truncation

methods such as the FSP method that fit naturally in the framework.

62

CHAPTER 4

CHEMICAL MASTER EQUATION WITH TIME-VARYING RATES

4.1 Introduction

So far we have considered two different approaches of solving the CME. It can

either be done indirectly with Monte Carlo methods, such as the SSA, or directly solved

with the FSP and its variants, some of which have been mentioned in Chapter 2. These

earlier FSP algorithms only work if the reaction rates in the biological system are constant.

As detailed in Chapter 2, the CME then becomes

ṗ(t) = A · p(t), (4.1)

where p(t) stores the probabilities of the state space at time t, and A stores the

propensities at which the system travels from one state to another within an infinitesimal

time period. Note that entries in A only depend on the reaction rates, therefore it is

time-independent if the reaction rates are constant throughout the time period of interest.

The theoretical solution for (4.1) is

p(tf) = exp(tfA)p(0), (4.2)

so the variable time-stepping FSP algorithms integrate from initial time t0 to the end time

of interest tf with the basic formula

p(tk + hk) ≈ exp(hkA)p(tk). (4.3)

However, if the reaction rates in the biological system change over time, then A

63

becomes time-dependent, and the CME changes to

ṗ(t) = A(t) · p(t), (4.4)

the solution of which is no longer (4.2), implying the current FSP integration formula (4.3)

is not exact. In this case, if we want to directly solve the CME for the probability

distributions, a general ODE solver, such as Adams-Bashforth, Runge-Kutta, or

Backward-differentiation formula, must be employed to solve (4.4).

We will develop a new integration method for (4.4) based on the Magnus expansion

in chapter 5. Here, we first review several different scenarios in which problems in the form

of (4.4) can arise in biologically relevant contexts. The chapter is organized as follows:

Section 4.2 examines several biological problems in which the time-dependence of the

reaction rates arises naturally. In Section 4.3, we reduce non-homogeneous ODE problems

into (4.4). Finally, we discuss the delay CME in section 4.4 and analyze how it can be

transformed into a CME with time-varying rates.

4.2 Biological origins of CME with time-varying rates

There are various reasons for which the reaction rates in a biological system can

change over time in the biological context. For instance, in [55], the authors modeled the

competition between several T cell clonotypes via coupled birth-death processes where the

size of one clonotype can affect the birth rates of the others. They also observed that in

human, all T cell clonotypes ultimately became extinct, and this phenomenon is

incorporated into the model as time-dependent birth rates for all clonotypes. As the birth

rates decrease to 0 over time, all T cell clonotypes eventually disappear. Hence, in this

case, the time-dependence of the reaction rates originates from biological observations.

An SIR model is an epidemiological model that computes the theoretical number of

people infected with a contagious illness over time [56, 57, 58, 59]. In the model, the

susceptible population (S) can become ill from contact with the infected population (I).

64

Eventually, they recover (R) and might become susceptible to the disease again. For some

diseases, the contact rate between the infected population and the susceptible population

appears to be periodic [56, 59]. This results in oscillatory reaction rates.

A transcriptional regulatory system in an E. coli cell is modeled in [54]. It contains

DNA templates, which can transcribe RNA. The RNAs in turn translate protein

monomers. Two monomers can combine into one dimer, and this dimer can bind to the

DNA template to start or stop the RNA transcription process. The reaction of monomers

combining to one dimer and the reaction of the dimer binding to the DNA are both

time-dependent, because as the cell grows, its volume increases, which decreases the

probability of the reactants colliding in order for the reactions to occur.

In chapter 5, all three problems described above will be solved with a Monte Carlo

method and traditional ODE solvers, as well as a Magnus-expansion-based integration

method that has not been investigated for solving such biological problems in the

literature. The models will therefore be described in detail in those numerical tests. Many

more models with time-varying reaction rates exist in the literature.

4.3 Non-homogeneous equations

In [60], the authors described a technique to transform a non-autonomous and

non-homogeneous linear differential equation set into (4.4). Let the ODE problem be in

the form of

dN

dtN
x(t) + fN−1(t) · d

N−1

dtN−1
x(t) + · · ·+ f1(t) · d

dt
x(t) + f0(t)x(t) = g(t), (4.5)

65

where x(t), g(t) ∈ Cm×d and fi(t) ∈ Cm×m. By introducing a new variable

z(t) =



x(t)

d
dt
x(t)

...

dN−1

dtN−1x(t)

1


∈ C(N+1)m×d,

the equation (4.5) can be rewritten as

d

dt
z(t) = M(t) · z(t), (4.6)

where the matrix M (t) is defined as

M (t) =



0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

...
...

...
...

...
...

... . . . 1 0 0

...
...

...
... 0 1 0

−f0(t) −f1(t) −f2(t) · · · −fN−2(t) −fN−1(t) g(t)

0 0 0 0 0 0 0



∈ C(N+1)m×(N+1)m.

Note that the equation (4.6) is in the form of (4.4) and therefore can be solved using the

numerical integration methods to be discussed in the next chapter.

4.4 Delay CME

In [61], the authors formulated the delay CME (DCME), in which some reactions

require a delay time period to finish. In particular, they considered a protein production

66

Figure 4.1: (a) Full-sized model. (b) Delay model

model in which the messenger RNA (mRNA) requires r intermediate steps to mature:

DNA km−→ DNA + mRNA1, (4.7)

mRNA1
k1−→ mRNA2, mRNA1

µ1−→ ∅, (4.8)

mRNA2
k2−→ mRNA3, mRNA2

µ2−→ ∅, (4.9)

. . . (4.10)

mRNAr
kr−→ mRNA, mRNAr

µr−→ ∅, (4.11)

mRNA
kp−→ mRNA + protein, mRNA µm−−→ ∅,

protein
µp−→ ∅

This model is described in Figure 4.1-a. They then combined those intermediate

67

reactions (4.7)-(4.11) into one:

R1 : DNA
k′m−→
τ

DNA + mRNA, (4.12)

R2 : mRNA
kp−→ mRNA + protein,

R3 : mRNA µm−−→ ∅,

R4 : protein
µp−→ ∅

This model is described in Figure 4.1-b. The intermediate reactions do not occur

simultaneously, so the reaction (4.12) in the abridged model is delayed with a random time

period τ and reaction rate

k′m = km ·
∏r

i=1 ki∏r
i=1(ki + µi)

,

accounting for the mRNA being degraded during the maturation process. Assuming that

µ = µ1 = · · · = µr and k = k1 = · · · = kr, the authors found the probability density

function (PDF) of τ to be

f(t) =
βrtr−1

(r − 1)!
e−βt (4.13)

and its cumulative distribution function (CDF) is

F (t) = 1− e−βt
r−1∑
k=0

βr−1−k

(r − 1− k)!
tr−1−k (4.14)

68

with β = µ+ k. The corresponding DCME for state x is

∂

∂t
P (x, t) =− (α2(P (x, t)) + α3(P (x, t)) + α4(P (x, t))) · P (x, t)

+ α2(P (x− ν2, t)) · P (x− ν2, t)

+ α3(P (x− ν3, t)) · P (x− ν3, t)

+ α4(P (x− ν4, t)) · P (x− ν4, t)

−
∑

xi∈I(x)

∫ t

0

k′m · f(τ) · P (x, t;xi, t− τ)dτ

+
∑

xi∈I(x)

∫ t

0

k′m · f(τ) · P (x− ν1, t;xi, t− τ)dτ

The first four terms on the right hand side correspond to the non-delay reactions R2, R3

and R4, which, upon occurring with propensities

α2 = kp · [mRNA],

α3 = µm · [mRNA],

α4 = µp · [protein],

instantaneously update the state vector according to their corresponding stoichiometric

vectors ν2, ν3 and ν4. The final two terms in the DCME correspond to the delay reaction

R1, accounting for all states in I(x), which consists of all possible states that the system is

able to follow via a chain of reactions before time t. In general, the joint probability

distribution P (x, t;x′, t− τ) is not given, and further assumptions are required to simplify

the DCME. However, for this specific model, this is not necessary, as the triggering of the

delay reaction does not depend on the state at triggering time or the occurrences of other

69

reactions, hence

∑
xi∈I(x)

∫ t

0

k′m · f(τ) · P (x, t;xi, t− τ)dτ =

∫ t

0

k′m · f(τ) ·
∑

xi∈I(x)

P (x, t;xi, t− τ)dτ

=

∫ t

0

k′m · f(τ) · P (x, t)dτ

= k′m · F (t) · P (x, t).

Similarly,

∑
xi∈I(x)

∫ t

0

k′m · f(τ) · P (x− ν1, t;xi, t− τ)dτ = k′m · F (t) · P (x− ν1, t),

and the DCME becomes

∂

∂t
P (x, t) =− (α2(P (x, t)) + α3(P (x, t)) + α4(P (x, t))) · P (x, t)

+ α2(P (x− ν2, t)) · P (x− ν2, t)

+ α3(P (x− ν3, t)) · P (x− ν3, t)

+ α4(P (x− ν4, t)) · P (x− ν4, t)

− k′m · F (t) · P (x, t) + k′m · F (t) · P (x− ν1, t),

which is in the form of a CME with time-varying rates (4.4). As noted in [61], this

simplification is the result of special properties in the proposed abridged model. The

propensity of the delayed reaction is constant, as no reactions change the number of DNA

or the reaction’s kinetic function. If this is not the case, then simplifying assumptions must

be made for the joint probability distributions.

70

CHAPTER 5

SOLVING CHEMICAL MASTER EQUATION WITH TIME-VARYING RATES BY
MAGNUS EXPANSION

This chapter is based on work accepted in Journal of Coupled Systems and

Multiscale Dynamics [62] and work accepted in the AMMCS 2017 Proceedings [63].

5.1 Introduction

As we have discussed previously, it is difficult to solve the CME directly because it

can involve a very large, or even infinite, number of ordinary differential equations and

therefore has traditionally been solved indirectly by using Monte Carlo methods, such as

Gillespie’s Stochastic Simulation Algorithm (SSA) [64, 6] or the First Reaction Method

(FRM) [65]. These algorithms simulate reactive events in the chemical processes, and

averaging their results from a large number of trajectories can offer insights into the model

as well as statistics of interest. Approximate representations using stochastic differential

equations (SDEs) yield other approaches [66, 67].

The FSP algorithms that we have encountered so far, however, can only be applied

when reaction rates are constant. In biological problems where reaction rates can change

over time, for instance due to cell volume increase or change in temperature or other

causes as detailed in Chapter 4, the CME may be approached with ODE solvers, such as

Adams, Runge-Kutta, or backward-differentiation formula.

The Magnus expansion [68] offers an alternative approach to dealing with the CME

with time-dependent rates. It expresses the solution to the ODE as the matrix exponential

of an infinite series involving multiple integrals and nested commutators. Although

originally a theoretical technique, it has recently been developed as a practical ODE

solver [69, 70, 71, 72, 60]. The Magnus series is truncated, the terms are rearranged to

71

optimize the execution time, and the integrals are approximated by a quadrature formula.

In this chapter, we embed the SSA in the Magnus method to reduce the state space,

which allows for lower run time while retaining the accuracy. We also revisit two error

estimation techniques in the literature, as well as implement two other error control

procedures, and employ these to make the Magnus method adaptive both in terms of the

time step and the state space. The resulting algorithms are then tested against Adams,

Runge-Kutta and backward-differentiation formula for three biological problems in which

the CME with time-dependent rates emerges.

The chapter is organized as follows: Section 5.2 revisits two Monte Carlo methods

commonly used to solve the CME. Some traditional ODE solvers are described in

Section 5.3, and the Magnus expansion as well as the Magnus-SSA algorithm are presented

in Section 5.4. Section 5.5 covers several error estimation methods, together with the

resulting adaptive time-stepping Magnus algorithms. Numerical tests are defined and

results are given in Section 5.6, and concluding remarks follow in Section 5.7.

For convenience, throughout this chapter, we will denote the ODE problem as

ṗ(t) = f(t,p(t)) ≡ A(t) · p(t),

and it is worth repeating that the ODE form of the CME is:


ṗ(t) = A(t) · p(t),

p(0) = p0,

(5.1)

5.2 Monte Carlo methods

To solve the CME indirectly, Monte Carlo methods simulate trajectories from the

initial state x(0) at t = 0 to a prescribed final time tf . Statistics of interest are then drawn

from the final states of the trajectories, such as means of the species counts, variance, or

marginal distributions. Many Monte Carlo methods are based on the works of

72

Gillespie [64, 6]. We describe here two methods, first reaction method (FRM) and

stochastic simulation algorithm (SSA).

5.2.1 First reaction method

At every time step in each trajectory, the first reaction method (FRM) [65] seeks

the reaction that occurs next, and the time it takes for it to occur. Below is a pseudocode

for the overall procedure:

• Step 1: Start from initial time t = 0 and initial state x = x(0)

• Step 2: Generate ξ1, . . . , ξM , uniformly distributed in (0, 1)

• Step 3: For every reaction k, find the minimal positive number τk so that

∫ t+τk

t

αk(x(t), u)du = ln

(
1

ξk

)

• Step 4: τ is the minimum of τ1, . . . , τM , and j is the index of the reaction with τ = τj.

• Step 5: Reaction j is the first to occur next, at t+ τ . Update the state and time

accordingly:

x← x+ νj

t← t+ τ

• Step 6: Return to step 2 until reaching final time tf .

FRM and other Monte Carlo methods approximate the probability distribution of

the system at the final time tf by simulating a large number of trajectories, and computing

the frequency of each state x in the state space as

P (x, tf) ≈ frequency(x) =
nx
ntotal

, (5.2)

73

where nx is the number of trajectories that end up in state x, and ntotal is the total

number of trajectories.

FRM is an exact method, because the trajectories are generated according to the

correct probability distributions. For each problem in our numerical tests, we use the FRM

frequencies to compare the results of the ODE solvers.

5.2.2 Stochastic simulation algorithm

If the reaction rates are time-independent, the first reaction method and the

stochastic simulation algorithm (SSA) [64, 6] are equivalent and the pseudocode simplifies

to:

• Step 1: Start from initial time t = 0 and initial state x = x(0)

• Step 2: Find the propensity sum αsum =
∑M

k=1 αk(x(t), t)

• Step 3: Generate ξ1 and ξ2, uniformly distributed in (0, 1)

• Step 4: j is the smallest integer so that

j∑
k=1

αk(x, t) > ξ1αsum

• Step 5: Compute τ = ln
(

1
ξ2

)
αsum

• Step 6: Reaction j is the first to occur next, at t+ τ . Update the state and time

accordingly:

x← x+ νj

t← t+ τ

• Step 7: Return to step 2 until reaching final time tf .

74

Note that the SSA is inexact for our purpose, because it does not account for the

time dependencies of the reaction rates. However, SSA is much faster than FRM, because

the latter contains M optimization problems and possibly many integration problems at

every time step.

5.3 ODE solvers

We will now describe several traditional ODE solvers for the purpose of solving the

CME directly. A detailed introduction to different classes of ODE solvers can be found

in [73, 74, 75]. Here we summarize the ones used in our numerical tests.

5.3.1 Adams

Adams methods form a family of linear multi-step methods [76], among which are

explicit Adams-Bashforth and implicit Adams-Moulton. Adams-Bashforth proceeds with

the explicit formulae of order r:

tk+1 = tk + hk,

pk+1 = pk + hk
(
βABr−1fk + · · ·+ βAB0 fk−r+1

)
,

fk+1 = f(tk+1,pk+1),

where
{
βABi

}r−1

i=0
are given analytically based on a Lagrange interpolation polynomial.

Adams-Mouton, on the other hand, is implemented as

tk+1 = tk + hk,

pk+1 = pk + hk
(
βAMr fk+1 + · · ·+ βAM0 fk−r+1

)
,

fk+1 = f(tk+1,pk+1),

where
{
βAMi

}r
i=0

are given analytically.

We use the Adams-PECE scheme by Shampine and Gordon [77], which

75

implements the implicit Adams-Moulton. The unknown pk+1 ≈ p(tk+1) is involved in both

sides of the formula, leading to a nonlinear problem that is approximately solved with a

fixed-point scheme starting from the solution of the explicit Adams-Bashforth.

5.3.2 Runge-Kutta

Runge-Kutta methods form a class of multistage, one-step iteration ODE solvers.

The explicit Runge-Kutta of order r proceeds with the scheme

tk+1 = tk + hk,

yi = pk + hk

i−1∑
j=1

mRK
ij f(tk + hkc

RK
j ,yj); i = 1, . . . , r,

pk+1 = pk + hk

r∑
j=1

bRKj f
(
tk + hkc

RK
j ,yj

)
,

in which the coefficients
{
mRK
ij

}s
i,j=1

,
{
bRKi

}s
i=1

and
{
cRKi

}s
i=1

are defined by their

Butcher-tableau.

In this comparison, we use the solver RK78 in the RKSUITE by Brankin et al. [78],

which is a reputed Runge-Kutta method that controls the error and stepsize by using

embedded Runge-Kutta formulae with orders 7 and 8. The solutions are denoted as

Runge-Kutta in the numerical tests.

5.3.3 Backward-differentiation formula

Backward-differentiation formula (BDF) methods are linear multi-step and follow

the formula of order r:

tk+1 = tk + hk,

pk+1 = hkβ
BDF
r f(tk+1,pk+1)+

αBDFr−1 fk + · · ·+ αBDF0 fk−r+1,

fk+1 = f(tk+1,pk+1),

76

where the coefficients
{
αBDFi

}r−1

i=0
and βBDFr are given analytically. The formula forms a

nonlinear problem, because pk+1 appears on both sides.

We use the VODPK/BDF implementation [79] which has different options in

solving the nonlinear problem. Here we confine to:

• BDF-GM-LU0: Newton root finding scheme; each linear system in the implicit

scheme is solved iteratively by SPIGMR (Scaled Preconditioned Incomplete

GMRES), preconditioned by the incomplete LU0 decomposition, which discards

elements not in the sparsity pattern of A,

• BDF-LU0: the linear system in the impiclit scheme is solved directly by incomplete

LU0 decomposition.

5.4 Magnus-based methods

5.4.1 Magnus expansion

The Magnus expansion [68, 69, 70] expresses the theoretical solution of (5.1) as

p(t) = exp(Ω(0,t)) · p0, (5.3)

where the matrix exponential is defined as

exp(Ω) =
∞∑
l=0

Ωl

l!
,

and Ω(0,t) can be written as an infinite series whose terms involve multiple integrals and

nested commutators:

Ω1 =

∫ t

0

A(τ)dτ,

S(1)
n = [Ωn−1,A],

S(j)
n =

n−j∑
m=1

[Ωm,S
j−1
m]; 2 ≤ j ≤ n− 1,

77

S(n−1)
n = adn−1

Ω1
(A),

Ωn =
n−1∑
j=1

Bj

j!

∫ t

0

S(j)
n (τ)dτ ;n ≥ 2,

Ω(0,t) =
∞∑
n=1

Ωn, (5.4)

where Bj are Bernoulli numbers and the adjoint representation is defined as

adjA(B) = [A, adj−1
A (B)], ad0

A(B) = B.

The Magnus integration method then follows:

tk+1 = tk + hk,

pk+1 = exp
(
σ

[q]
(tk,hk)

)
· pk, (5.5)

where σ[q]
(tk,hk) is an approximation of Ω(tk,hk) to the qth order. To derive σ[q]

(tk,hk), the

Magnus expansion (5.4) is truncated to the first q terms, and the integrals are

approximated by a quadrature rule.

The Magnus expansion has been employed extensively in physics where it is

sometimes referred to as time-dependent exponential perturbation theory [70]. It has the

appeal that its approximation preserves important qualitative properties of the exact

solution [72, 80]. It has also been used in the field of geometric numerical integration to

reproduce important geometric structures in the solutions, a goal not straightforwardly

possible with general-purpose integration methods.

We implement the 4th-order Magnus integration method using the Gauss-Legendre

78

quadrature rule [71, 69, 81]:

A1 = A

(
tk +

(
1

2
−
√

3

6

)
hk

)
,

A2 = A

(
tk +

(
1

2
+

√
3

6

)
hk

)
,

σ
[4]
(tk,hk) =

hk
2

(A1 +A2) +
h2
k

√
3

12
[A2,A1] .

5.4.2 Krylov subspace technique

The term exp
(
σ

[4]
(tk,hk)

)
· pk in (5.5) is computed by Expokit, which implements a

Krylov-based algorithm that seeks to approximate exp (σ) · p, the action of the matrix

exponential on a vector, as a projection in the Krylov subspace of order m

Km(σ,p) = span
{
p,σ · p, . . . ,σm−1 · p

}
.

The Arnoldi process is employed to compute an orthonormal basis Vm of this subspace,

and an associated Hessenberg matrix Hm. The Krylov approximation is then

exp (σ) · p ≈ βVm exp(Hm)e1,

where β = ‖p‖2 and e1 = (1, 0, . . . , 0)T . The Padé approximation [82], together with

scaling and squaring, is employed to compute exp(Hm). Other variants with an incomplete

orthogonalization in the Arnoldi process could also be attempted [83], but this was not our

focus here.

Krylov-based methods have proved efficient when the matrix is sparse, as is the case

in many biological problems. They also have the appeal of being matrix-free by only

requiring the matrix-vector product σ[4]
(tk,hk) · v to compute exp

(
σ

[4]
(tk,hk)

)
· pk. Our

numerical tests use the vanilla Expokit with Krylov order m = 30, producing

approximations well within the tolerance tol = 10−5 even for problems with large sizes.

79

5.4.3 Magnus with an adaptive SSA-based state space

During the integration time of any ODE solver for (5.1), most of the values in p(t)

will be extremely small and therefore computing the full distribution can be expensive

without gaining much accuracy. For CME problems with time-independent rates, the

FSP-SSA method [1] confines the state space X at each step to only the most probable

states at that step. To apply this strategy in our context, we proceed as follows: knowing

the current pk ≈ p(tk) and having chosen a step-size hk, we wish to advance to the next

approximation pk+1 ≈ p(tk + hk) using (5.5) with σ[4]
(tk,hk) restricted to only the subset of

states that the system is likely to occupy during the time interval [tk, tk + hk]. This is

implemented by first dropping current states with low probabilities in pk, then sampling

SSA trajectories from the remaining states and updating it to include all states that the

SSA paths travel through. The ‘roughness’ in the paths is then smoothed out by the r-step

reachability [10], which seeks all states that can be connected to the state space by r

reactions or less, and expands the state space to include those. Below is the corresponding

pseudocode.

• Step 1: X is reduced to states with probability > 10−16

• Step 2: X is expanded by SSA runs over [tk, tk + hk] and r-step reachability with

r = 5

• Step 3: A(t) is updated to only states in X

• Step 4: Compute pk+1 = exp
(
σ

[4]
(tk,hk)

)
· pk

The implementation uses a hash table to keep track of the state space and also note

that A(t) is in functional form for the matrix-free Krylov stage, with the action of the

matrix exponential in the last step done by using Expokit with the matrix-vector operator

80

σ
[4]
(tk,hk) · v defined through [81]:

A1 = A

(
tk +

(
1

2
−
√

3

6

)
hk

)
,

A2 = A

(
tk +

(
1

2
+

√
3

6

)
hk

)
,

w1 = A1v,

w2 = A2v,

w3 = A2w1,

w4 = A1w2,

σ
[4]
(tk,hk) · v =

hk
2

(w1 +w2) +
h2
k

√
3

12
(w3 −w4) .

It is important to mention again that SSA is considered inexact for the CME with

time-dependent rates, because reaction rates are kept constant during each time step.

However, the SSA is used only to expand the state space. The probability distribution is

computed using the Magnus method instead, therefore the results are not compromised. In

the cases where the reaction rates change dramatically, the state space can be expanded

using the FRM. This will be more time-consuming, but the state spaces will not be

distorted.

The step-size hk can be kept constant throughout the integration [63]. In this case,

the choice of the step-size is very important for the performance of the Magnus-SSA

algorithm, as the resulting probability distributions can be distorted if the step-size is too

large, and the algorithm would be too time-consuming if the step-size is too small. We

therefore implement an adaptive MAGNUS-SSA method, which requires a scheme for

computing the step-size hk. This will be completed in the next section.

81

5.5 Adaptive time-stepping schemes

As can be seen from the previous section, the error in MAGNUS-SSA comes from

a combination of four different error sources:

• The FSP error: from truncating the state space

• The Magnus truncation error: from truncating the infinite Magnus series

• The quadrature error: from approximating the integrals involved with quadrature

rules

• The Krylov error: from approximating pk+1 = exp(σ) · pk using Krylov subspace

techniques.

The FSP error exists for all ODE solvers and MAGNUS-SSA. However, in our

numerical tests, for the ODE solvers, a sufficiently big state space was truncated at the

beginning of each algorithm according to a large number of SSA trajectories, and is fixed

during the entire integration. The FSP error for these schemes is therefore minimal. In

MAGNUS-SSA, the state space is changed at each time step, but the large number of

SSA trajectories and r-step reachability with large r required to build the state space

assure that the FSP error is also insignificant. Therefore we assume that the FSP error is

negligible for all algorithms.

The Krylov error, on the other hand, is automatically managed by Expokit [37],

which is the most extensive software for computing the matrix exponential and has been

reported to be well suited for large sparse matrices [82]. Expokit allows an error tolerance,

so we can also leave out the Krylov error for simplicity.

The dominant error of the Magnus-based methods, therefore, comes from truncating

and interpolating the Magnus series. We seek to approximate this error and use it in an

adaptive time-stepping Magnus-based scheme.

82

5.5.1 Adaptive time-stepping scheme for MAGNUS-SSA

At any time interval [tk, tk + hk], the local error is defined to be

error(tk+1) = ‖pk+1 − p̄k+1‖1,

where

pk+1 = exp
(
σ

[4]
(tk,hk)

)
· pk

is the MAGNUS-SSA approximation to the exact solution

p̄k+1 = exp(Ω(tk,hk)) · pk.

The following pseudocode is a template for the overall step-by-step integration

process using a traditional step-size control.

Algorithm MAGNUS-SSA
1: Initialize state space and p0 and time t0 = 0
2: Initialize step-size h0 = 0.5 and step k = 0
3: while tk < tf do
4: Update state space and get pk+1 = exp

(
σ

[4]
(tk,hk)

)
pk

as discussed in the previous section
5: Compute the error estimate error(tk+1)
6: if error(tk+1) > ε then
7: hk ← 0.5 · hk
8: go to Step 3
9: end if

10: tk+1 ← tk + hk
11: hk+1 ← δ

(
ε

error

)1/p
hk

12: k ← k + 1
13: end while

The safety factor δ is 0.5 in our code. The error tolerance is ε = 10−5, and Expokit

is implemented with the same tolerance. The parameter p in Step 11 is set as the order of

the error estimator, to be discussed next. The discussed variants use the same Magnus

approximation in Step 3 and only differ in how they perform the error estimation in Step 5

83

of the template. We will see later that Step 3 is moved to be after the if-block in the case

of MAGNUS-SSA-4 because it has an a priori error control.

5.5.2 Error approximation

A traditional error estimating technique is to compute the results of one ODE solver

with two different orders, and compute the difference. MacNamara and Burrage [81]

developed a local error estimate based on this embedding scheme:

error(tk+1) ≈
∥∥∥exp

(
σ

[4]
(tk,hk)

)
· pk − exp

(
σ

[2]
(tk,hk)

)
· pk
∥∥∥

1

=
∥∥∥pk+1 − exp

(
σ

[2]
(tk,hk)

)
· pk
∥∥∥

1
,

where exp
(
σ

[2]
(tk,hk)

)
· pk is the 2nd-order Magnus with Gauss-Legendre quadrature rule,

computed with Expokit where the matrix-vector product operator σ[2]
(tk,hk) · v defined as

A1 = A

(
tk +

(
1

2
−
√

3

6

)
hk

)
,

A2 = A

(
tk +

(
1

2
+

√
3

6

)
hk

)
,

w1 = A1v,

w2 = A2v,

σ
[2]
(tk,hk) · v =

hk
2

(w1 +w2) .

Since this error estimate is based on the 2nd-order Magnus approximation, it is of order

p = 2. The algorithm will proceed with the 4th-order Magnus approximation instead. This

Magnus implementation is denoted MAGNUS-SSA-1 in our numerical tests.

At each time step, MAGNUS-SSA-1 requires two Expokit runs, one for the

2nd-order solution and one for the 4th-order solution, where only the latter is required to

proceed. This can be time-consuming, therefore we propose a new cheaper local error

estimate that removes the need to explicitly compute the 2nd-order approximation. The

84

starting point is the observation that the inverse of a matrix exponential is

[exp (σ)]−1 = exp (−σ) ,

which allows us to rewrite the terms in error(tk+1) as

[
exp

(
σ

[4]
(tk,hk)

)
− exp

(
σ

[2]
(tk,hk)

)]
· pk =

[
I − exp

(
σ

[2]
(tk,hk)

)
exp

(
−σ[4]

(tk,hk)

)]
· pk+1 (5.6)

From this, we use the fact that the product of two matrix exponentials can be

approximated using the Baker-Campbell-Hausdorff formula, and the important fact that

the matrix-vector product for the 2nd-order Magnus algorithm is embedded in that for the

4th-order Magnus algorithm. This reduces (5.6) into

[
I − exp

(
σ

[2]
(tk,hk) − σ

[4]
(tk,hk) −

1

2

[
σ

[2]
(tk,hk),σ

[4]
(tk,hk)

]
+O(h4

k)

)]
· pk+1

=

[
−σ[2]

(tk,hk) + σ
[4]
(tk,hk) +

1

2

[
σ

[2]
(tk,hk),σ

[4]
(tk,hk)

]
+O(h4

k)

]
· pk+1

=

[
h2
k

√
3

12
[A2,A1] +

h3
k

√
3

48
[A1 +A2, [A2,A1]] +O(h4

k)

]
· pk+1,

where A1 and A2 are defined as in the MAGNUS-SSA algorithm.

We can derive from this a cheap approximation of the local error estimate in

85

MAGNUS-SSA-1:

u1 = A1 · pk+1; u2 = A2 · pk+1; u3 = A2 · u1;

u4 = A1 · u2; u5 = A1 · u1; u6 = A2 · u2;

u7 = A1 · u3; u8 = A2 · u4; u9 = A2 · u3;

u10 = A1 · u4; u11 = A1 · u6; u12 = A2 · u5;

error(tk+1) =

∥∥∥∥∥h2
k

√
3

12
(u3 − u4) +

h3
k

√
3

48
(2u7 − 2u8 + u9 − u10 + u11 − u12)

∥∥∥∥∥
1

.

The Magnus implementation using this error estimate is denoted MAGNUS-SSA-2 in

the numerical tests. Because it is based on MAGNUS-SSA-1, the error is also of order

p = 2.

Another well-known error approximating approach is computing the difference

between the result of the ODE solver with the result of the same solver with halved

time-step. Using this technique, the local error is then:

error(tk+1) ≈
∥∥∥exp

(
σ

[4]
(tk,hk)

)
· pk − exp

(
σ

[4]
(tk+hk/2,hk/2)

)
· exp

(
σ

[4]
(tk,hk/2)

)
· pk
∥∥∥

1

=
∥∥∥pk+1 − exp

(
σ

[4]
(tk+hk/2,hk/2)

)
· exp

(
σ

[4]
(tk,hk/2)

)
· pk
∥∥∥

1
.

The Magnus implementation using this error estimate is called MAGNUS-SSA-3 in the

numerical tests. A disadvantage of this approach is that Expokit has to be run three times

for every time step, one for the normal 4th-order Magnus approximation and two for the

‘corrector’. On the other hand, the error estimate is of order p = 4, therefore the time

steps will be less conservative than MAGNUS-SSA-1 and MAGNUS-SSA-2.

The final approach of approximating the local error in consideration is based on the

leading term of the error in truncating the Magnus expansion. Iserles, Marthinsen and

86

Nørsett [71] derived

σ
[4]
(tk,hk) = Ω(tk,hk) +

h4
k

720
[A(tk + hk), [A(tk + hk), [A(tk),A(tk + hk)]]] +O(h5

k).

They used the Baker-Campbell-Hausdorff formula to obtain a local error estimate of order

p = 4 from this equation:

error(tk+1) =

∥∥∥∥ h4
k

720
[A(tk + hk), [A(tk + hk), [A(tk),A(tk + hk)]]] · pk

∥∥∥∥
1

.

Expanding the nested commutators in the equation and collecting like-terms, we get a

commutator-free form of this error estimate, used in MAGNUS-SSA-4:

A0 = A (tk) ,

A3 = A (tk + hk) ,

u1 = A3 ·A3 ·A0 ·A3 · pk,

u2 = A3 ·A0 ·A3 ·A3 · pk,

u3 = A3 ·A3 ·A3 ·A0 · pk,

u4 = A0 ·A3 ·A3 ·A3 · pk,

error(tk+1) =

∥∥∥∥ h4
k

720
(3u1 − 3u2 − u3 + u4)

∥∥∥∥
1

.

A great advantage of MAGNUS-SSA-4 over the other Magnus variants in our

comparison is that the error estimate is a priori. Its implementation moves Step 3 to be

after the if-block in the template given earlier so that for each time step, it calculates the

error before committing to proceed, and therefore does not run Expokit unnecessarily.

There is also only one Expokit run per time step, keeping the execution time minimal.

As implemented here, this error estimate has the shortcoming that it takes into

account only the Magnus truncation error and not the quadrature error, unlike the other

87

0 10 20 30 40 50

V1

0

0.01

0.02

0.03

0.04

0.05
P

ro
b
a
b
ili

ty

0 10 20 30 40 50

V2

0

0.01

0.02

0.03

0.04

0.05 FRM

Runge-Kutta

BDF-GM-LU0

BDF-LU0

MAGNUS-SSA-1

MAGNUS-SSA-2

MAGNUS-SSA-3

MAGNUS-SSA-4

Figure 5.1: Probability distributions from the two competing T cell clonotypes (Test 1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

10
-15

10
-14

10
-13

10
-12

L
o
c
a
l
e
rr

o
r

a
p
p

ro
x
im

a
ti
o
n

MAGNUS-SSA-1

MAGNUS-SSA-2

MAGNUS-SSA-3

MAGNUS-SSA-5

Figure 5.2: Error estimates in the MAGNUS-SSA variants from the two competing T cell
clonotypes (Test 1)

Magnus variants. The quadrature error is notoriously difficult to estimate [84, 85], and it

depends on the behavior of A(t).

5.6 Numerical tests

All numerical tests were done using resources of the Alabama Supercomputer, which

houses two supercomputers called SGI UV and DMC. The user can request a job to be

executed on either of them, or can simply let the operating system select the more suitable

system depending on the workload and availability. All codes were written in FORTRAN

77 and were run on the large queue of the SGI UV with 1 processor core (Xeon E5-4640

CPU operating at 2.4 GHz), 360hr time limit and 120GB memory limit.

The models in our numerical tests arise from different fields of biology. In each

numerical test, the distributions from solving (5.1) by the ODE solvers are compared with

the frequencies from 10,000 FRM trajectories, computed by (5.2). The fixed FSP state

88

space for the ODE solvers is found by finding the maximum and minimum of each species

count during the 10,000 FRM trajectories, except for MAGNUS-SSA, which does not

require a priori fixed FSP bounds and changes the state space adaptively instead. These

FSP bounds are reported for each numerical test.

The error of each ODE solver is defined to be the maximum of 1-norm differences

between the marginal distributions from that ODE solver and the FRM.

5.6.1 Test 1 - the model of two competing T cell clonotypes

The first problem in our comparison models the competition between T cell

clonotypes [55, 81]. We consider two species:

V1 : T cell clonotype 1,

V2 : T cell clonotype 2,

which can interact through a multivariate birth-death process:

∅ c1−→ V1,

V1
c2−→ ∅,

∅ c3−→ V2,

V2
c4−→ ∅.

89

The reaction rates are [81]:

c1 = φ(t) ·
(

0.5[V1]

[V1] + [V2]
+

0.5[V1]

[V1] + 1000

)
(year−1),

c2 = 1 (year−1),

c3 = φ(t) ·
(

0.5[V2]

[V1] + [V2]
+

0.5[V2]

[V2] + 1000

)
(year−1),

c4 = 1 (year−1),

where φ(t) = 60

1+(t
15)

5 models the decreasing stimulation that the clonotypes receive.

We start from the initial values

V1 = 10

V2 = 10

until the end time tf = 5 (years). The FRM trajectories during this time interval result in

the bounds for the FSP state space:

0 ≤ V1 ≤ 57,

0 ≤ V2 ≤ 51.

The FSP state space contains n = 3016 states and the CME matrix contains nz = 14860

nonzero elements. The infinity norm of the CME matrix at t = 0 is 513603.

The results from the ODE solvers are summarized in table 5.1. Figure 5.1 shows the

probability distributions from these ODE solvers, and figure 5.2 shows the local error

estimates from all MAGNUS-SSA algorithms. Figure 5.1 shows that the solutions from

Runge-Kutta and the MAGNUS-SSA implementations agree with the FRM

frequencies. Adams-PECE did not finish, while the solutions of both BDF-GM-LU0

and BDF-LU0 fail to follow the shape of the correct distributions, resulting in noticeable

errors, as seen in table 5.1. Figure 5.2 shows that the error estimates from all

90

Table 5.1: Results from the ODE solvers for the model of two competing T cell clonotypes
(Test 1). The error is computed as the maximum 1-norm difference between the marginal
distributions from each ODE solver and the FRM.

ODE solver Time cost and note Error
Adams-PECE Incorrect solver (flag 4) N/A
Runge-Kutta 1s 0.0481
BDF-GM-LU0 1s 0.1624
BDF-LU0 5s 1.3152
MAGNUS-SSA-1 10s 0.0478
MAGNUS-SSA-2 8s 0.0476
MAGNUS-SSA-3 4s 0.0479
MAGNUS-SSA-4 3s 0.0491

0 20 40 60 80

S

0

0.02

0.04

0.06

0.08

P
ro

b
a
b
ili

ty

90 110 130 150 170

I

0

0.02

0.04

0 5 10 15 20 25 30 35

R

0

0.02

0.04

0.06

0.08

0.1

0.12

FRM

Adams-PECE

Runge-Kutta

MAGNUS-SSA-1

MAGNUS-SSA-2

MAGNUS-SSA-3

MAGNUS-SSA-4

Figure 5.3: Probability distributions from the SIR model with periodic contact rate (Test 2)

MAGNUS-SSA variants are very similar.

5.6.2 Test 2 - the epidemic model with periodic contact rate

The second problem in our comparison is an epidemic model [56, 57, 58, 59],

consisting of three species:

S : susceptible population,

I : infected population,

R : recovered population.

91

0 1 2 3 4 5 6 7 8 9 10

Time

10
-7

10
-6

L
o
c
a
l
e
rr

o
r

a
p
p
ro

x
im

a
ti
o
n

MAGNUS-SSA-1

MAGNUS-SSA-2

MAGNUS-SSA-3

MAGNUS-SSA-4

Figure 5.4: Error estimates in the MAGNUS-SSA variants from the SIR model with
periodic contact rate (Test 2)

These populations can interact in six different reactions:

S + I c1−→ 2I,

I c2−→ R,

R c3−→ S,

S c4−→ ∅,

I c5−→ ∅,

R c6−→ ∅,

with reaction rates

c1 = 0.003f(t) (day−1),

c2 = 0.02 (day−1),

c3 = 0.007 (day−1),

c4 = 0.002 (day−1),

c4 = 0.05 (day−1),

c6 = 0.002 (day−1),

92

where f(t) =
(
1 + 0.6 sin

(
2π·t

6

))
describes the periodic contact rate between the infected

population and the susceptible population.

The initial values for the populations are:

S = 200,

I = 10,

R = 0,

and the end time is tf = 10 (years). The bounds for the FSP state space are:

0 ≤ S ≤ 200,

0 ≤ I ≤ 17,

0 ≤ R ≤ 35.

There are n = 1237356 states in the FSP state space, and nz = 8518611 nonzero elements

in the CME matrix. The infinity norm of the CME matrix is 78286181 at t = 0.

Table 5.2 summarizes the results from the ODE solvers. Figures 5.3 and 5.4 show

the probability distributions from the ODE solvers and the error estimates in the

MAGNUS-SSA variants. Because the solutions from BDF-GM-LU0 and BDF-LU0

are very far from the correct probability distributions and even contain negative values (see

table 5.2), their approximations are not included in Figure 5.3. The solutions from

Adams-PECE, Runge-Kutta and all MAGNUS-SSA variants are shown in

agreement with the FRM frequencies. Figure 5.4 shows that the error estimates are

periodic, with slight disturbances when f(t) reaches maximum or minimum.

93

Table 5.2: Results from the ODE solvers for the epidemic model with periodic contact rate
(Test 2). The error is computed as the maximum 1-norm difference between the marginal
distributions from each ODE solver and the FRM.

ODE solver Time cost and note Error
Adams-PECE 243s 0.0550
Runge-Kutta 172s 0.0550
BDF-GM-LU0 189s 136.2503
BDF-LU0 17s 71.4624
MAGNUS-SSA-1 3924s 0.0550
MAGNUS-SSA-2 2211s 0.0550
MAGNUS-SSA-3 2165s 0.0572
MAGNUS-SSA-4 509s 0.0552

0 10 20 30 40 50

M

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
ro

b
a
b
ili

ty

0 20 40 60 80

D

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20

RNA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2

DNA

0

0.2

0.4

0.6

0.8

1

0 1 2

DNA.D

0

0.2

0.4

0.6

0.8

1

0 1 2

DNA.2D

0

0.2

0.4

0.6

0.8

1
FRM

Runge-Kutta

MAGNUS-SSA-1

MAGNUS-SSA-2

MAGNUS-SSA-3

MAGNUS-SSA-4

Figure 5.5: Probability distributions from the transcriptional regulatory model (Test 3)

0 50 100 150 200 250 300

Time

10
-7

L
o
c
a

l
e
rr

o
r

a
p
p

ro
x
im

a
ti
o
n

MAGNUS-SSA-1

MAGNUS-SSA-2

MAGNUS-SSA-3

MAGNUS-SSA-4

Figure 5.6: Error estimates in the MAGNUS-SSA variants from the transcriptional regu-
latory model (Test 3)

94

5.6.3 Test 3 - the transcriptional regulatory model

The final biological problem for comparing the ODE solvers depicts a

transcriptional regulatory system [54]. The problem consists of six species:

M : protein (monomer),

D : transcription factor (dimer),

DNA : DNA template, free of dimers,

DNA.D : DNA template, bound at one binding site,

DNA.2D : DNA template, bound at both binding sites,

RNA : mRNA produced by transcription,

which can interact through ten reactions:

RNA c1−→ RNA + M,

M c2−→ ∅,

DNA.D c3−→ RNA + DNA.D,

RNA c4−→ ∅,

DNA + D c5−→ DNA.D,

DNA.D c6−→ DNA + D,

DNA.D + D c7−→ DNA.2D,

DNA.2D c8−→ DNA.D + D,

M + M c9−→ D,

D c10−→ M + M.

The reaction rates are:

95

c1 = 0.043 (s−1),

c2 = 0.0007 (s−1),

c3 = 0.078 (s−1),

c4 = 0.0039 (s−1),

c5 =
0.012 · 109

A · V (t)
(s−1),

c6 = 0.4791 (s−1),

c7 =
0.00012 · 109

A · V (t)
(s−1),

c8 = 0.8765 · 10−11 (s−1),

c9 =
0.05 · 109

A · V (t)
(s−1),

c10 = 0.5 (s−1),

where A is the Avogado’s constant, and V (t) is the cell volume at time t, which increases

from the initial value V (0) = 10−15 in accordance to

V (t) = V (0)eln(2)t/τ

during the entire cell cycle time period τ = 35 minutes until the cell divides.

We wish to follow the distributions of the count of each species from the initial state

where the cell has 2 monomers, 6 dimers, and two unbound DNAs:

M = 2, D = 6,

DNA = 2, DNA.D = 0,

DNA.2D = 0, RNA = 0,

until the final time tf = 300 (s).

96

Table 5.3: Results from the ODE solvers for the transcriptional regulatory model (Test 3).
The error is computed as the maximum 1-norm difference between the marginal distributions
from each ODE solver and the FRM.

ODE solver Time cost and note Error
Adams-PECE Incorrect solver (flag 5) N/A
Runge-Kutta 82415s 0.0465
BDF-GM-LU0 1203s 78.2631
BDF-LU0 88s 273.3214
MAGNUS-SSA-1 137304s 0.0465
MAGNUS-SSA-2 52764s 0.0465
MAGNUS-SSA-3 78505s 0.0465
MAGNUS-SSA-4 49139s 0.0465

The FSP bounds are

0 ≤ M ≤ 50, 0 ≤ D ≤ 81,

0 ≤ DNA ≤ 2, 0 ≤ DNA.D ≤ 2,

0 ≤ DNA.2D ≤ 2, 0 ≤ RNA ≤ 24.

There are n = 2822850 states in the FSP state space, and the CME matrix contains

nz = 24093072 nonzero elements. The infinity norm of the CME matrix at t = 0 is

311973491.

Table 5.3 summarizes the results from the ODE solvers. The probability

distributions from the ODE solvers and the error estimates are plotted in figures 5.5

and 5.6. Similarly to Test 2, BDF-GM-LU0 and BDF-LU0 produce inaccurate results

(see Table 5.3). Furthermore, Adams-PECE detected that the problem is stiff and

therefore did not finish. Their solutions are therefore not included in Figure 5.5.

Runge-Kutta and all MAGNUS-SSA variants finished and their solutions followed the

FRM frequencies faithfully. Figure 5.6 shows that the MAGNUS-SSA error estimates

are stable, with clear agreement between the 2nd-order and the 4th-order approximations,

respectively.

97

5.6.4 Observations

The three biological problems in the numerical tests were chosen because they

exhibit distinct features. The model of two competing T cell clonotypes is symmetrical.

Over time, the probability mass concentrates on states with low V1 counts and high V2

counts, or those with high V1 counts and low V2 counts, because the model is also

bimodal. The epidemic model with periodic contact rate, on the other hand, is monomodal

with periodic time-dependency. Finally, the transcriptional regulatory model is

monomodal and very stiff, evidenced in the differences in magnitude of the reaction rates

and the big norm of the CME matrix.

The initial conditions for the problems in the three numerical tests were chosen so

that they are biologically relevant. Specifically, the initial state in Test 3 is from the

original problem [54]. The initial condition for Test 1 follows the same structure as in [81],

and the initial values for Test 2 is the same as in [56], except the lower value for S, which

is dictated by storage requirements. We also performed tests for the same biological

problems with slightly different initial conditions, and found the results to be qualitatively

similar to those presented here. This means that the algorithms are sensitive to a similar

extent to the initial conditions.

BDF-GM-LU0 and BDF-LU0 finished in all three numerical tests. They escape

the storage requirement of the complete LU decomposition by applying a fast and cheap

incomplete LU decomposition instead where, in the course of the decomposition, the

elements not in the sparsity pattern of A(t) are discarded. The price for the low storage

requirement and cheap computation time cost is that the incomplete LU decomposition

might lose valuable information during the integration time, evidenced by the large error of

the marginal distributions. Because of this, the probability distributions computed by

BDF-GM-LU0 and BDF-LU0 are wrong in all three tests. Tables 5.1, 5.2 and 5.3

confirm that their results always have the largest errors. For instance, in Test 1, which is

the smallest problem, they fail to follow the shape of the marginal probability

98

distributions. This is in contrast to results in [86], in which BDF-GM-LU0 and

BDF-LU0 performed better than their complete LU variants across a range of ODE

problems. This is because for those problems, the matrices are sparse with small norms, so

the elements discarded by the incomplete LU decomposition are indeed insignificant.

Performing the complete LU decomposition in that case would be time-consuming without

substantially improved accuracy.

Adams-PECE did not finish in Test 1, because the maximum number of steps

allowed in the program was exceeded before reaching tf . In Test 2, it produced correct

distributions in competitive time, only surpassed by Runge-Kutta (RK). In Test 3

Adams-PECE did not finish because it detected that the problem is stiff.

Quite surprisingly, RK was the only solver besides the MAGNUS-SSA algorithms

to complete for all three numerical tests. This is interesting, given that among the

traditional ODE solvers in this comparison, it is the only explicit algorithm. Even more,

RK finished first in Tests 1 and 2, because its explicit formula requires less computation

time. RK produced the correct probability distribution in Test 3, while the other

traditional ODE solvers failed because the problem is stiff. Note that in our previous

report [87], all ODE solvers were tested for the transcriptional regulatory model with the

same set-up as Test 3, but with initial values

M = 0, D = 2,

DNA = 1, DNA.D = 0,

DNA.2D = 0, RNA = 0,

final time tf = 600s, FSP bounds

0 ≤ M ≤ 46, 0 ≤ D ≤ 59,

0 ≤ DNA ≤ 1, 0 ≤ DNA.D ≤ 1,

0 ≤ DNA.2D ≤ 1, 0 ≤ RNA ≤ 12,

99

and n = 293280, nz = 2091993. RK did not finish in that test, possibly because of the

longer end time.

All MAGNUS-SSA algorithms produced exact probability distributions in all

numerical tests, proving that Magnus-based integration methods are suitable for solving

CME problems with time-dependent rates. On the other hand, MAGNUS-SSA is

time-consuming, because there is at least one exponential-matrix-vector product to be

computed every time step. Therefore all MAGNUS-SSA implementations were exceeded

by RK in Test 1, and RK and Adams-PECE in Test 2. However, all MAGNUS-SSA

implementations except for MAGNUS-SSA-4 outpaced RK in Test 3, because the

Magnus-based methods have been known to excel in solving highly oscillatory or stiff

problems [72].

We now compare the different MAGNUS-SSA algorithms. They all produced

good results in the tests, and it is not surprising that MAGNUS-SSA-1 always finished

last. It requires two Expokit runs per time step, which is time-consuming, and the error

estimate is of order 2, implying the time steps are taken conservatively.

MAGNUS-SSA-2 employs our cheap approximation of the local error estimate used in

MAGNUS-SSA-1, and it is faster in all numerical tests, even more than halving the time

cost in Test 3. Figures 5.2, 5.4 and 5.6 reveal that the error estimates in

MAGNUS-SSA-2 follow closely those in MAGNUS-SSA-1, explaining why its

solutions are very dependable.

MAGNUS-SSA-3 applies the common halved time-step scheme. Because both

the normal Magnus solution and its ‘corrector’ are of the 4th order, so is its error. This, in

combination with the fact that its error estimates tend to be lower than those in

MAGNUS-SSA-1 and MAGNUS-SSA-2, result in more relaxed time steps and

ultimately small time costs, even though there are three Expokit runs for every time step.

MAGNUS-SSA-4 is the fastest among the Magnus implementations in all tests,

and there are several reasons for this. Firstly, and most importantly, its error estimate is a

100

priori, allowing the algorithm to check the time step before committing to the

time-demanding task of finding the next probability distribution. Moreover, there is only

one Expokit run for each time step. It is possible that for the problems where A(t)

changes dramatically, MAGNUS-SSA-4 might fail, because its error estimate does not

take the quadrature error into account. However, many biological problems with

time-dependent rates are modeled using continuous functions for the reaction rates, in

which case MAGNUS-SSA-4 is a good candidate as an ODE solver.

5.7 Conclusions

In this chapter, we developed the framework of Magnus-SSA, which allows the FSP

state space to be adaptively changed during the Magnus integration time. This decreases

the time costs of the Magnus-based methods. We also implemented two local error

approximating schemes from MacNamara and Burrage [81], and Iserles, Marthinsen and

Nørsett [71], as well as two other error estimation techniques. The resulting Magnus-SSA

algorithms were then tested against Adams-PECE, Runge-Kutta, and BDF, across several

problems in biology where the CME arises. The numerical results show that Magnus-based

methods are serious candidates for solving stiff CME problems with time-dependent rates.

It is important to point out that Adams-PECE, Runge-Kutta, and BDF are

‘all-purpose’ ODE solvers, where the Magnus-based methods in consideration here are only

suitable for solving the linear ODE in the form of (5.1). However, such problems arise in

many biological fields and even in other sciences where Markovian reaction networks

occur [4]. Numerical Magnus-based methods, therefore, can be an important choice for

solving these problems. On the other hand, there is already interest in expanding the

Magnus method to solving non-autonomous linear ODE problems [60]. This may be of

interest to the biology community, where such problems can emerge [88].

101

CHAPTER 6

APPLICATION OF THE KRYLOV-FSP-SSA METHOD IN PARAMETER
INFERENCE

This chapter is based on work published in Physical Biology [89].

6.1 Introduction

In this chapter, we will consider an important application for the numerical and

theoretical methods that we have developed so far. One of the important goals of systems

biology is to understand the complex and stochastic dynamics of gene regulation. A

challenge toward this goal is that there are usually many unknown reaction rates in the

involved mathematical models.

We use a data-driven maximum likelihood approach [90, 91, 92, 93, 94, 95, 96] to

search for and validate unknown parameters so that the distributions reported in the

experimental data can be recreated in the models. We apply this approach to synthetic

data generated from the negative feedback model in Min Wu et al. [3], where an inhibitory

gene network was constructed using two synthetic promoters [97]. Their lab experiment

involved TetR and LacI (Fig. 6.1), which are repressors that inhibit the expression of each

other by binding to their corresponding operator sites, TetR operator (Otet) and LacI

operator (Olac), placed in engineered GAL1 promoters. Anhydrotetracycline (ATc) was

used to inhibit TetR. The abundance of each protein was recorded by flow cytometry with

yeast-enhanced green fluorescent protein (yEGFP) and mCherry red fluorescent protein.

A mathematical model consisting of a set of two ordinary differential equations

(ODEs) was proposed to explain the interaction of the two proteins involved [3, 97].

Experiments in [3] showed bimodality that is disruptive to the ODE model. This is

because the dynamics of cellular processes with low copy numbers of molecules can be

102

Figure 6.1: Schematic diagram of the network used in Min Wu et al. [3].

noisy events [98, 99, 100] and so the deterministic ODE formulation is not always ideal.

This is supported by real time measurements of RNAs and proteins using fluoresent

proteins made possible by recent advances in bio-imaging [101, 102, 103, 104, 105].

Because of this, stochastic models have arisen as a natural modeling choice in many cases

in systems biology [106, 107, 92]. The problem of integrating stochastic models with

single-cell data is, therefore, of relevance to the systems biology community [108]. But in

order to use either deterministic or stochastic biological models for analysis or for

designing future lab experiments with confidence, unknown parameters need to be found so

that the models can capture the qualitative and quantitative features of the distributions

found in the data [2, 109].

Parameter fitting in stochastic models is harder [91, 93, 92], although it can offer

important insights, particularly in systems biology where fitting of statistics or

distributions can reveal some information about the underlying biological parameters or

mechanisms. For example in [110], the probability distribution of nascent RNA was

obtained by a stochastic model. It predicted hitherto unobserved discontinuities and

periodic peaks in the distribution, which were then verified experimentally. Aslo in [13],

parameter identification and cross-validation analyses were employed to choose among

many stochastic model hypotheses the best model that fits the data without losing its

103

predictive power because of overfitting. There have been other works that gained valuable

insights from using stochastic models [99, 100]. Moreover, while rate constants derived

from deterministic parameter values have been used in many published CME models, the

noise in the system can generate dynamics that are different from the predictions of

deterministic models [91, 111]. Using deterministic parameters in a stochastic model can

thus be deceptive. Hence, parameter inference in stochastic models is a relevant problem.

This has kindled the interest of several recent efforts aimed at facilitating the

task [91, 112, 111, 109]. In this study, we use the concept of maximum

likelihood [90, 91, 92, 93, 94, 95, 96], which has been regarded as a natural approach given

the probabilistic nature of stochastic models [108]. The general principle of maximum

likelihood parameter estimation [96, 13, 110] is to find the parameters with which the

mathematical model can reproduce the distributions in the experiments by using the

likelihood of the data given a parameter set as the objective function for an optimization

problem. Hence, fitting parameters in a stochastic model using maximum likelihood is

essentially an optimization problem. What makes this problem challenging is that there

can be confounded parameters, an identifiability issue or multimodality of the likelihood

surface [108]. Although there have been comparisons of different derivative-free

optimization schemes [113, 114], there is no single optimization scheme that performs best

across all test problems [113]. Because of this, it is important to compare different

optimization algorithms in the specific context of parameter fitting using the maximum

likelihood. Here, we compare the performances of five optimization algorithms (three local

and two global), representing some of the popular optimization techniques.

The rest of the chapter is organized as follows: Section 6.2 forms the CME for the

particular gene regulation case under consideration. The likelihood of experimental

observations given some parameter set is defined in Section 6.3, as well as the parameter

fitting scheme as an optimization process. The likelihood function is found by solving the

CME, which is formidable and further compounded with the many function evaluations

104

required for the optimization problem. Section 6.4 outlines the Krylov-FSP-SSA

algorithm, which is a powerful numerical component that we use for this purpose. We

report some numerical tests in Section 6.5, followed by a discussion and some concluding

remarks in Section 6.6.

6.2 The CME for the TetR-LacI gene regulation problem

The application considered in this study is found in Min Wu et al. [3, 97], where

their mathematical model uses a set of two ODEs to characterize the interaction of the two

proteins:

d[LacI]
dt

= crl + pe,tet · (cil − crl)− δ · [LacI] (6.1)

d[TetR]

dt
= crt + pe,lac · (cit − crt)− δ · [TetR] (6.2)

We will detail the variables pe,tet, pe,lac, and constants cil, crl, cit, crt, δ when describing the

CME. We will see that there is a total of 11 parameters, 6 of which are estimated from

previous experiments and the remaining 5 are to be fitted.

To describe the stochastic alternative based on the CME, we define the state vector

consisting of 2 proteins species: TetR and LacI, and represented as

x = ([TetR], [LacI])T (6.3)

where [TetR] and [LacI] can be any nonnegative integer counting the corresponding

proteins. We model the interaction between the two species using the following reactions:

∅ κ1−→ LacI (6.4)

LacI κ2−→ ∅ (6.5)

∅ κ3−→ TetR (6.6)

TetR κ4−→ ∅, (6.7)

105

where κi is the reaction rate of reaction i. The formulae for these rates can be found in [3]

and are summarized below.

The quantity pe,tet is the probability of TX (the promoter for LacI) to not be bound

by TetR. Given the state vector at the moment, it can be defined as

KI = kATc · [TetR] (6.8)

fI =

(
KI

KI + [ATc] · kt

)m
(6.9)

pe,tet =
knt
t

knt
t + ([TetR] · fI)nt

(6.10)

where the parameter kATc, nonlinearity constant nt, and kt (defined to be the active [TetR]

needed so that pe,tet = 50%) are to be fitted. Note that from fitting the Hill coefficient of

induction of ATc to the dose response curves, we have

m · nt = 11.5 (6.11)

and therefore only need to find nt.

If TX is not bound by TetR (with probability pe,tet), the production rate of LacI is

cil (min−1). However, if TetR does not bind to TX (with probability 1− pe,tet), the

production rate of LacI is crl (min−1). Therefore we have:

κ1 = pe,tet · cil + (1− pe,tet) · crl (6.12)

= crl + pe,tet · (cil − crl) (6.13)

Similarly, pe,lac is defined as the probability of LX (the promoter for TetR) to not be

bound by LacI, and is given as

pe,lac =
knl
l

knl
l + [LacI]nl

(6.14)

106

where the nonlinearity constant nl and parameter kl (active [LacI] needed so that

pe,lac = 50%) are unknown. We then have

κ3 = crt + pe,lac · (cit − crt) (6.15)

where crt (min−1) and cit (min−1) are TetR production rates when LX is repressed or

induced, respectively.

Finally, because TetR and LacI are both very stable proteins, the decrease of

intracellular abundance of these repressors is through cell division. Yeast cells grown in

galactose media have doubling times of about 6 hours [3, 97], corresponding to

κ2 = κ4 = δ ≈ 0.002 (min−1). (6.16)

We can then define the propensities of the four reactions given the state of the

system, which are the probabilities of them occurring during an infinitesimal time interval

[t, t+ dt):

α1 = crl + pe,tet · (cil − crl) (6.17)

= crl +
knt
t · (cil − crl)

knt
t +

[
[TetR] ·

(
kATc·[TetR]

kATc·[TetR]+[ATc]·kt

)m]nt
(6.18)

α2 = δ · [LacI] (6.19)

α3 = crt + pe,lac · (cit − crt) (6.20)

= crt +
knl
l · (cit − crt)
knl
l + [LacI]nl

(6.21)

α4 = δ · [TetR] (6.22)

where the parameters kATc, kt and kl, and nonlinearity constants nt and nl are unknown

and need to be fitted by the experimental data (note that since these are dimensionless

quantities used to calculate pe,tet and pe,lac, they do not require any unit).

107

The other parameters are fixed and come from experiments with promoters [97]:

crl = 7.46 (min−1) (6.23)

cil = 918 (min−1) (6.24)

crt = 13.06 (min−1) (6.25)

cit = 717.38 (min−1) (6.26)

m =
11.5

nt
(6.27)

where the last equation comes from (6.11).

The CME [5] for this particular problem becomes:

dP (x, t)
dt

=
4∑

k=1

αk(x− νk)P (x− νk, t)−
4∑

k=1

αk(x)P (x, t) (6.28)

where the stoichiometric vector νk represents the change in species numbers if reaction k

occurs. The ODE form of equation (6.28) for the n possible states X = {x1, . . . ,xn} is

then:

ṗ(t) = A · p(t) (6.29)

where p = (P (x1, t), . . . , P (xn, t))T and the transition rate matrix A = [aij] ∈ Rn×n is

defined as

aij =


−
∑4

k=1 αk(xj), if i = j

αk(xj), if xi = xj + νk

0, otherwise

(6.30)

The agreement between the dynamics described by the CME and the original

ODEs [3] will be shown in Section 6.5.

108

6.3 Parameter fitting

Parameter inference in stochastic biochemical systems has been less developed than

in deterministic models [93]. Maximum likelihood [96, 13, 110] represents a natural

approach for this problem because of the probabilistic nature of stochastic models. In this

section we will define the likelihood function for the specific experimental data of Min Wu

et al. [3], but to help make the contrast with our approach clear, we first briefly describe

their approach to parameter fitting using the ODE model.

There are two sets of lab experiments in [3]. In the first experiment, TXLX1

cultures are treated with full ATc induction (250 ng/mL) for 48hr. In the second

experiment, the cultures are treated with no ATc induction during the same time frame.

Both cultures are then rediluted into media containing different ATc levels and the yEGFP

measurements are recorded. The normalized GFP plots, as seen in Fig. 1D-F in [3] for the

two experiments, do not coincide, which indicates bimodality. The ATc region where the

plots are distinct is called the bistable region [3].

The goal of the fitting scheme in their work [3] is to find the parameters (kATc, nt,

kt, nl and kk) so that the bistable region predicted by the mathematical model fits the

experimental data. A range for each parameter is specified, so that they have biologically

reasonable values. Random parameter sets are then generated uniformly from these

regions. The bistable region for each set is then calculated, and only those whose bistable

regions are within 10% relative error from the experimentally established region are kept.

We explore here a more general approach to fitting, in which the goal is not to fit

the bistable region but to find the parameter set so that the frequencies shown in the

experimental data can be captured in the mathematical model. Since in general, the flow

cytometry measurements performed at different time points for different experiments

produce histograms of the protein numbers, the goal of our approach of parameter fitting is

to calibrate the parameters, which are kATc, nt, kt, nl and kk in this application, so that the

1In [3], the gene network constructed using the TX and LX synthetic promoters is called TXLX.

109

probability distributions predicted by the mathematical model at these time points fit the

experimental results. This can be formulated using the definition of likelihood function.

Suppose that N cells were under observation, and the ith cell was measured at time

point ti of experiment ei and found to belong to the state xi = ([TetR]i, [LacI]i)T .

Assuming a parameter set θ = (kATc, nt, kt, nl, kk)
T , we can solve the CME to compute the

probability that a given cell is in that state, which is p(xi|θ, ei, ti). The total likelihood of

all observations, L(D|θ), is the product of the probabilities of all observed cells:

L(D|θ) =
N∏
i=1

p(xi|θ, ei, ti). (6.31)

The problem of parameter fitting is then to find the parameter set θFit that maximizes this

likelihood, or equivalently, the logarithm of the likelihood:

θFit = arg maxθ(L(D|θ)) (6.32)

= arg maxθ(log(L(D|θ))) (6.33)

= arg maxθ(
N∑
n=1

log(p(xi|θ, ei, ti))). (6.34)

An optimization routine is required to find θFit. To conduct parameter searches, we employ

five different optimization algorithms: PRAXIS [115], NELMIN [116, 117] and

NEWUOA [118, 119], representing local optimization approaches, together with GLOBAL

[120, 121, 122] and SIMANN [123, 124] which are two global optimization algorithms.

We note that there have been other works that dealt with modeling and analyzing

experimental data of a genetic toggle switch, some of them very similar to the model

discussed here [90, 2, 109] but with differences in the parameter fitting schemes. In [2]

and [109], Munsky and Khammash fitted single-cell data using statistical quantities, such

as the mean levels, marginal distributions, or full joint distributions, employing the FSP to

compute the solutions to the CME. The fitted parameter arguments are then chosen to

110

minimize the difference between the measured statistical quantity and the numerical

solution of that quantity, using the 1-norm since the FSP naturally provides exact bounds

on the 1-norm error of the solution. Their search was run using multiple iterations of

fminsearch in MATLAB, which is a local optimization algorithm, and a simulated

annealing algorithm. In this work, we use the concept of maximum likelihood to fit the

parameters instead.

6.4 The Krylov-FSP-SSA algorithm

In the maximum likelihood approach, the CME is repeatedly solved over a large

number of parameter sets, from which the likelihood of each parameter set can be

computed and the parameters with the maximal likelihood is chosen. As we have seen in

previous chapters, solving the CME is a formidable task. There are infinitely many states

that the system can occupy when the copy numbers of species in the system are not

bounded (as in the problem of interest here). The choice of the CME solver is therefore

crucial to the effectiveness of this approach. The Stochastic Simulation Algorithm (SSA)

or other Monte Carlo methods were chosen in many maximum likelihood

works [91, 92, 93, 94, 95]. They avoid the curse of dimensionality by drawing random

trajectories of the system and using the resulting frequencies to indirectly approximate the

true probability distributions. In this chapter, we employ the FSP to directly solve the

CME.

An advantage of solving the CME directly by the FSP, detailed in previous sections,

is that unlike Monte Carlo methods, such as the SSA [6, 7, 8] or its many improved

variants [9, 16, 17, 125, 126, 127], the FSP possesses an analytical bound on the error of the

resulting probability distributions. As the number of states taken into account in the FSP

is increased, this bound is decreased and the probability of any given state of the system is

more accurate. This contrasts with Monte Carlo methods, where the error is statistical.

Among existing implementations mentioned in Chapter 2, the Krylov-FSP-SSA

method by Sidje and Vo [1] turns out to be reliable and efficient. The method uses SSA

111

trajectories to find the likely states during the interval [tk, tk + τk] of small length τk, and

Krylov techniques [37] for evaluating the matrix exponential, which are among the most

effective strategies, especially when the matrix is large and sparse [82]. Since the state

space is kept compact, containing only the most likely states of the system, AJk is usually

considerably smaller than it would be in the original FSP algorithm, and therefore the

time taken by the matrix exponential is even further reduced.

We performed a trial comparison between the Krylov-FSP-SSA and another FSP

implementation [2]. We observed that, across 100 evaluations with randomized parameter

sets, they achieved comparable accuracy but the former took on average 23s while the

latter took 134s (Section 6.5 has more details). It should be noted that there are many

different FSP implementations, and choosing the right algorithm for any specific problem

is not always obvious. However, the Krylov-FSP-SSA algorithm proved to be a powerful

enough tool for our task that involves repeated solves of the CME during the optimization

process.

6.5 Numerical tests

6.5.1 Computing platform

All tests reported here utilized resources of the Alabama Supercomputer Authority,

which at the time of writing houses two supercomputers called SGI UV and DMC. The user

can request a job to be executed on either of them, or can simply let the operating system

select the more suitable system depending on the workload and availability. All codes were

written in FORTRAN 77 and were run on the large queue of the SGI UV with 1 processor

core (Xeon E5-4640 CPU operating at 2.4 GHz), 360hr time limit and 1GB memory limit.

6.5.2 Comparison between the CME and ODE models

In Section 6.2, we rewrote the deterministic ODE system in [3] into the stochastic

CME. Therefore it is important to show that the two models indeed describe the same

evolution in protein counts, which will be confirmed now.

112

Figure 6.2: Left panel: vector field of the ODEs [3] when the parameters are kATc = 0.94, kt =
11, nt = 1.56, kl = 264, nl = 3.35. The red solid line and the black dashed line represent
two solutions of the ODEs when the initial state is ([TetR], [LacI]) = (10, 0) and (0, 10),
respectively. Four panels on the right: evolution of the probability distribution at time 12,
24, 48 and 180hr from solving the CME with the same parameter set.

Figure 6.3: The probability distribution at 48hr, computed by 100,000 SSA runs (left plot)
and by the Krylov-FSP-SSA algorithm (right plot). The parameters are kATc = 0.94, kt =
11, nt = 1.56, kl = 264, nl = 3.35.

113

Figure 6.2 shows the vector field of the ODE model, which dictates the evolution in

numbers of TetR and LacI in any cell. The ODEs are solved for two different initial states:

([TetR], [LacI]) = (0, 10) (6.35)

and

([TetR], [LacI]) = (10, 0) (6.36)

and the solutions are superimposed on the vector field (the black dashed line and the red

solid line, respectively). Even though the initial states are close to each other, the

trajectories branch out to two different steady states. This demonstrates the stochasticity

of the system, where a small change in the protein counts at the beginning can lead to two

different cell fates.

The CME is then solved with the Krylov-FSP-SSA algorithm for the same

parameter set and the resulting transient probability distributions are also shown in

Figure 6.2. As predicted in the vector field of the ODEs, the probability mass first drifts

toward the unstable steady state, then it is divided between the two modes of the bimodal

distribution.

There are several observations to be drawn from this numerical test. First of all, the

fact that the distributions resulting from the CME agree with the vector field of the ODEs

implies that the two models describe the same problem, confirming the reliability of the

CME. Second, even though the ODEs’ vector field can predict both the unstable and

stable states, it cannot produce the transient distributions which are required for

computing the likelihood function. These transient distributions also give a clearer picture

of the cell’s fate. For example, solving the ODEs with initial state ([TetR], [LacI]) = (0, 0)

only results in one steady state. However, the stochastic nature of the system implies that

the system might end up in the second steady state instead. The CME not only predicts

that but also shows the probability for the cell to commit to either outcome. This is

114

difficult to do using the ODE model.

6.5.3 Comparison between Krylov-FSP-SSA and SSA

Having checked that the CME model is compatible with the original ODE model

in [3], we will now assess the choice of the Krylov-FSP-SSA as the CME solver for

computing the likelihood function instead of Monte Carlo methods such as the SSA.

Figure 6.3 compares the probability distribution when the parameters are:

kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35 (6.37)

at 48hr, when the system is in equilibrium, by using on one hand the Krylov-FSP-SSA

algorithm, and on the other hand 100,000 trajectories of the classic SSA, which took 2

minutes in runtime. A clear contrast here is that solving the CME by the Krylov-FSP-SSA

algorithm took about 10s. Recall also the advantage of FSP algorithms to offer

computations accurate to an a priori threshold (set here to be 10−5).

In previous works of maximum likelihood estimation for parameter inference in

stochastic models [90, 91, 92, 93, 94, 95], the SSA or other Monte Carlo approaches were

used for computing the likelihood function. However, the large number of different

parameter sets to be examined means that it is not realistic to compute many realizations

for each parameter set. The resulting distributions might therefore be incomplete. By

contrast, for small gene regulation problems, where the state space is small enough and the

integration interval is not too long, FSP algorithms can supply the probabilities for many

more states in a reasonable short runtime.

6.5.4 Comparison between Krylov-FSP-SSA and original FSP

There has not been a systematic comparison between different FSP

implementations in a wide range of biological problems. The Krylov-FSP-SSA algorithm

was chosen here for several reasons. First, it can be used without prior assumptions on the

model. Several other FSP algorithms require bounds on the state space, and this cannot

115

be known without trial runs to find the areas on the state space that accumulate the most

probability mass. The Krylov-FSP-SSA algorithm, however, finds the state space on the

fly by following the direction of a few SSA runs and therefore does not need a priori

bounds on the protein counts. Second, with its time-stepping feature, the Krylov-FSP-SSA

algorithm can be more efficient than other FSP algorithms.

To check its effectiveness for the model under consideration in this study, we

compare it to a FSP implementation by Munsky [2] with the parameter set (6.37).

Munsky’s FSP implementation was translated from its original MATLAB code to

FORTRAN for a fair comparison, since it is well-known that FORTRAN is magnitudes

faster than MATLAB.

The two algorithms were tested for 100 different parameter sets in the parameter

space. Each parameter set is randomly picked from the uniform distribution in its range,

chosen to be the same as that used in [3]:

0.01 <kATc < 1 (6.38)

1 <kt < 400 (6.39)

1 <nt < 5 (6.40)

1 <kl < 400 (6.41)

1 <nl < 5 (6.42)

For each parameter set, we record the runtime for finding the probability

distributions by either algorithm and then computing the likelihood function based on the

distributions. The average runtime of each algorithm is shown in Table 6.1. It is also

crucial to check that the two algorithms give the same likelihood value. For this, we

116

Table 6.1: Comparison between the Krylov-FSP-SSA [1] and Munsky’s FSP implementa-
tion [2] using 100 evaluations with randomized parameter sets to compute the averages.

Average runtime of the Krylov-FSP-SSA 23s
Average runtime of the FSP in [2] 134s
Average relative 1-norm error (6.43) 1.23× 10−2

compute the relative 1-norm error for each parameter set θ:

relerr =
|L1(D|θ)− L2(D|θ)|

|L2(D|θ)|
(6.43)

where L1(D|θ) is the likelihood computed by the Krylov-FSP-SSA algorithm, and L2(D|θ)

is computed by Munsky’s FSP implementation. The average relative 1-norm error of the

100 parameter sets is shown in Table 6.1.

We can clearly see that even though the resulting likelihoods are practically the

same between the two algorithms, the Krylov-FSP-SSA has a much shorter average

runtime. This is because there are a number of stark differences between them, notably the

fact that the Krylov-FSP-SSA is a time-stepping algorithm, unlike Munsky’s

implementation in [2].

It is important to note that there are other FSP variants, many of which are

time-stepping [12, 11, 19, 128] and some might be more efficient than the Krylov-FSP-SSA

in some instances. However, there has not yet been an in-depth numerical comparison

between the variants, and the Krylov-FSP-SSA was retained because of its availability and

its satisfactory performance for our job.

With the CME solver chosen, the final piece of the puzzle is to pick an optimization

algorithm for finding the parameter set with maximum likelihood. There are many

different derivative-free optimization schemes and their variants. There have also been

works to compare these schemes in a variety of test problems, e.g., [113, 114]. Overall, the

performance of the optimization schemes depends on the specific problems, and there is no

single optimization scheme that is guaranteed to perform best in all circumstances [113].

117

Figure 6.4: (Test 1) Result of the optimization algorithms with starting parameter guess:
kATc = 0.2, kt = 250, nt = 4, kl = 55, nl = 3. First row: the synthetic data consisting of
protein counts for 100,000 cells per time point, computed by SSA with the true parameters
kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35. Second row: the distributions at
corresponding time points with the starting parameter guess. Third row: the distributions
at corresponding time points with the final parameter guess.

118

Figure 6.5: (Test 2) Result of the optimization algorithms with starting parameter guess:
kATc = 0.9, kt = 13, nt = 1, kl = 255, nl = 3. First row: the synthetic data consisting of
protein counts for 100,000 cells per time point, computed by SSA with the true parameters
kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35. Second row: the distributions at
corresponding time points with the starting parameter guess. Third row: the distributions
at corresponding time points with the final parameter guess.

119

Figure 6.6: (Test 3) Result of the optimization algorithms with starting parameter guess:
kATc = 0.8, kt = 8, nt = 2, kl = 280, nl = 4. First row: the synthetic data consisting of
protein counts for 100,000 cells per time point, computed by SSA with the true parameters
kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35. Second row: the distributions at
corresponding time points with the starting parameter guess. Third row: the distributions
at corresponding time points with the final parameter guess.

120

Table 6.2: Input parameters of the local optimization algorithms

Input pa-
rameters

Value Definition

PRAXIS

T0 10−3 Error tolerance
MACHEP 2.22× 10−16 Machine precision
H0 0.1 Maximum stepsize
FMIN 106 Estimate of minimum (used only for

printing)

NELMIN

STEP [0.1, 0.1, 1, 1, 0.05] Size and shape of the initial simplex
REQMIN 106 Terminating limit for the variance of

the function values
KONVGE 10 Convergence check
KCOUNT 1000 Maximum number of function eval-

uations

NEWUOA

NPT 11 Number of interpolation conditions
RHOBEG 0.8 Initial value of a trust region radius
RHOEND 1 Final value of a trust region radius
MAXFUN 1000 Maximum number of function eval-

uations

Therefore, in this study we compare some popular local and global optimization

algorithms for the specific task of stochastic parameter fitting with maximum likelihood.

All of them are readily available online in FORTRAN and represent different optimization

approaches.

Some of the optimization routines being investigated are maximization schemes,

while others are minimization schemes. In the latter case, the sign of the likelihood

function is simply reversed. Also, the routines originally written using the single precision

REAL data type have all been changed to DOUBLE PRECISION for a fair comparison.

6.5.5 Local optimization schemes

We include three different local optimization algorithms for the fitting scheme:

• PRAXIS [115], one of the first derivative-free optimization solvers developed, using

Powell’s method of conjugate search directions

• NELMIN [116, 117], an implementation of the Nelder-Mead algorithm for

121

Table 6.3: Results of the local optimization algorithms

nt nl kt kl kATc Number of
function
evalutations

Likelihood

Synthetic
data

1.56 3.35 11 264 0.94 -1873172.8

Test 1

Initial
guess

4 3 250 55 0.20 -6329761.9

PRAXIS 4.02 5.00 249.93 55.01 0.08 131 (33 linear
searches)

-6314107.0

NELMIN 2.26 4.98 245.05 76.39 0.02 193 -6294412.4
NEWUOA 4.00 3.80 250.00 55.00 0.60 14 -6321248.2

Test 2

Initial
guess

1 3 13 255 0.90 -3659419.6

PRAXIS 1.87 3.31 13.33 265.27 1.00 268 (83 linear
searches)

-1884653.9

NELMIN 1.25 3.05 9.17 255.02 0.97 1007 -1923230.3
NEWUOA 1.20 3.00 13.00 255.00 0.90 13 -3549849.8

Test 3

Initial
guess

2 4 8 280 0.80 -5413880.6

PRAXIS 1.47 3.35 8.24 264.32 0.68 346 (121 lin-
ear searches)

-1873192.5

NELMIN 1.65 3.55 12.14 277.00 0.99 1004 -1905593.2
NEWUOA 2.00 4.00 8.00 280.00 0.40 13 -2037143.6

122

derivative-free optimization

• NEWUOA [118, 119], implementing Powell’s model-based algorithm using trust

regions.

Aside from an initial guess for the parameter set, these routines require the input

parameters shown in Table 6.2. These values are recommended in the codes and are

therefore used here.

As will be shown later, the performance of these optimization algorithms depends

heavily on the starting guess: if the initial guess for the parameters is too far away from

the correct parameters, the algorithms are less likely to provide a good output. The

experimental data [3] consists of the protein numbers at different time points. To compare

the performances of the optimization codes, we produce synthetic data by solving for the

distribution vectors resulting from the CME with the initial state ([TetR], [LacI]) = (0, 0)

with the true parameter set (6.37) at 5 different time points: 1hr, 6hr, 12hr, 24hr, and 48hr.

For each time point, 100,000 samples are randomly drawn from the distribution vectors.

The frequencies of the protein counts at the 5 time points are the input for the

fitting scheme and the goal is to find the parameter set that can recreate the distribution

in the synthetic data. We remark here that synthetic data allows us to easily test our

fitting method and the performance of the algorithms on a variety of input, knowing that

the results on the synthetic data are indicative of the results to be expected on

experimental data. There is a limit of maximum 1000 function evaluations, which is

adequate for these algorithms to converge to some maxima.

The biological model [3], as is the case with most models, defines specific ranges for

the parameters, which were given in (6.38)–(6.42). During the process, if the parameter set

proposed from the optimization scheme is out of this range, its likelihood is defined to be a

very small number (−10−21) to dissuade the scheme from traveling in this direction.

To highlight how the initial guess plays a crucial role when using a local

optimization scheme, we implement all three schemes from three different initial guesses.

123

In the first test:

kATc = 0.2, kt = 250, nt = 4, kl = 55, nl = 3 (6.44)

in the second test:

kATc = 0.9, kt = 13, nt = 1, kl = 255, nl = 3 (6.45)

and finally in the third test:

kATc = 0.8, kt = 8, nt = 2, kl = 280, nl = 4 (6.46)

The numbers of function evaluations that each scheme requires, the final optimal

parameter set and its likelihood are shown in Table 6.3.

As can be seen in Table 6.3, the initial guess for the first test is very far from the

true parameter set used to produce the synthetic data, resulting in a small likelihood. The

final results from the local optimization schemes from this initial guess, therefore, only

slightly improve the likelihood. The distributions they produce are similar and shown in

Figure 6.4. These distributions fail to recreate the distributions observed in the synthetic

data, as expected.

The initial guess for the second test is closer to the true parameter set, and the final

results from PRAXIS and NELMIN reflect this: their optimal likelihoods are greatly

increased from the initial likelihood, and are very close to the true value. Between these

two algorithms, the result from PRAXIS is better (larger final likelihood) and the

algorithm converges after a much smaller number of function evaluations. On the other

hand, NEWUOA converges after only 13 iterations and only marginally increases the

likelihood. The distributions resulting from PRAXIS and NELMIN are shown in

Figure 6.5. As reflected in the large likelihood, the final result recreates the bimodality in

the synthetic data and the evolution of probability distribution over time. Even though the

initial guess produces distributions that are very different from the data, the optimization

codes can easily calibrate the parameters to maximize the likelihood function and arrive at

124

the distributions almost identical to the synthetic data.

In the third test, the small likelihood of the initial guess indicates that it is far from

the optimal point. Nevertheless, the results from PRAXIS and NELMIN are still very close

to the true values. Similar to the second test, PRAXIS converges after less function

evaluations to a better solution than NELMIN, and NEWUOA converges after only 13

iterations to the worst solution among the three algorithms. Figure 6.6 shows that the

initial parameter guess produces distributions very different from the synthetic data, but

the final result from the fitting scheme is similar to the frequency shown in the synthetic

data.

We can conclude from these three tests that the performance of local optimization

algorithms depends greatly on the initial guess. This reflects the fact that the likelihood

function is difficult to optimize: it is likely not convex, and has many local maxima that

these algorithms cannot escape from. Among the three algorithms, PRAXIS produces

better results than NELMIN in spite of much smaller number of function evaluations

needed for it to converge. NEWUOA converges quickly but its results are inferior to

PRAXIS and NELMIN.

In real life applications, however, neither the true parameter set nor its likelihood

are known in advance. This therefore casts doubt on employing these local optimization

algorithms. A solution to this might be to start the local optimization scheme from

different initial guesses, randomly chosen from the range, and select the best final result.

This is the strategy of a number of global optimization algorithms, including GlobalSearch

and MultiStart in MATLAB [129, 130]. An advantage of this is that each optimization run

is independent from the others, and so it is possible to produce a parallel algorithm.

Another strategy is to employ global optimization schemes. These algorithms focus on

finding the maximum over the entire range and will be investigated in the next section.

6.5.6 Global optimization schemes

Two global optimization algorithms are investigated:

125

Table 6.4: Input parameters of the global optimization algorithms

Input pa-
rameters

Value Definition

GLOBAL

NSIG 6 Convergence criterion
M 1 Number of residual functions
N100 500 Number of sample points to be

drawn uniformly in one cycle
NG0 10 Number of best points selected from

the actual sample
SEED [1, 2, 3, 4, 5, 6] Seeds for the random number gener-

ator
SIMANN T0 Initial temperature

X [4, 3, 250, 55, 0.2] Initial guess for the parameter set
RT 0.85 Temperature reduction factor
EPS 10 Error tolerance for termination
NS 20 Number of cycles
NT 100 Number of iterations before temper-

ature reduction
NEPS 4 Number of final function values to

decide upon termination
MAXEVL 5000 Maximum number of function eval-

uations
C [2, 2, 2, 2, 2] Vector controlling the step length

adjustment
ISEED1 1 First seed for the random number

generator
ISEED2 2 Second seed for the random number

generator
VM [1, 1, 1, 1, 1] Step length vector

126

Table 6.5: Results of the global optimization algorithms

nt nl kt kl kATc Number of
function evalu-
tations

Likelihood

Synthetic data 1.56 3.35 11 264 0.94 -1873172.8
GLOBAL 1.50 3.35 9.24 264.00 0.77 4572 -1873171.5

1.55 3.35 10.63 264.01 0.90 -1873172.2
1.29 3.35 4.31 263.98 0.33 -1873181.5
3.40 3.17 21.41 267.17 1.00 -2002408.4
3.54 2.95 8.16 269.13 0.22 -2078322.3
4.35 2.32 22.18 283.77 0.83 -2321101.8
4.53 4.34 18.74 329.37 0.47 -2637311.5
2.14 1.88 7.67 310.07 0.38 -2668259.4
3.07 2.11 19.95 324.27 0.99 -2743173.7
4.15 2.65 18.98 342.64 0.59 -2916667.9
3.51 2.35 2.94 346.36 0.05 -3004177.6
3.32 2.91 381.46 268.37 0.02 -3740211.5
3.08 3.02 172.91 272.32 0.76 -3744919.8
3.75 2.76 29.49 264.93 0.03 -3745244.7
4.64 3.10 73.69 266.65 0.37 -3746429.0
3.22 3.01 270.00 261.40 0.22 -3748192.9
1.51 3.21 163.64 266.39 0.47 -3750487.6
2.90 2.64 283.87 262.79 0.59 -3757378.6
1.61 3.40 283.71 281.80 0.95 -3762507.3
4.60 3.47 334.80 280.11 0.69 -3767111.1

SIMANN from
T0 = 101

2.64 1.00 247.53 81.58 0.59 limit exceeded -5375590.2

SIMANN from
T0 = 102

4.01 1.00 248.27 72.83 0.23 limit exceeded -5495580.3

SIMANN from
T0 = 103

3.17 1.00 246.87 77.95 0.40 limit exceeded -5425506.7

SIMANN from
T0 = 104

1.46 3.63 9.76 269.04 0.83 limit exceeded -1873618.3

SIMANN from
T0 = 105

2.54 4.27 15.10 271.02 0.77 limit exceeded -1880111.8

SIMANN from
T0 = 106

3.86 4.96 213.19 284.03 0.78 limit exceeded -2142633.2

SIMANN from
T0 = 107

4.35 3.90 31.67 257.66 0.51 limit exceeded -2034590.3

SIMANN from
T0 = 108

1.86 1.53 80.26 254.45 0.81 limit exceeded -2146360.6

SIMANN from
T0 = 109

4.04 1.90 374.31 75.31 0.88 limit exceeded -2041629.5

SIMANN from
T0 = 1010

2.64 2.52 180.20 342.90 0.46 limit exceeded -2086480.4

127

• GLOBAL [120, 121, 122], based on the Boender-Rinnooy-Stougie-Timmer

algorithm [120, 121] and is a stochastic method involving sampling, clustering and

local search. It was implemented in FORTRAN by Csendes [122], and the output

contains up to 20 local maxima.

• SIMANN [123, 124], a simulated annealing algorithm [131, 132, 133, 134].

The input parameters required by these routines are shown in Table 6.4. Similarly to the

tests with local optimization schemes, the values used here are recommended by the codes

when available.

The comparison of these two algorithms uses the same synthetic data in the

previous section as the data for fitting parameters, as well as the range for the parameters.

A limit of 5000 function evaluations is applied on each algorithm. In practice this has been

shown to be adequate for good results.

Unlike GLOBAL, the algorithm SIMANN as well as other simulated annealing

algorithms depend on important input parameters to produce good results. The algorithm

escapes from local optima, which is important to produce better results than local

optimization schemes, by accepting downhill steps. This decision is made by the

Metropolis criteria using T (“temperature") and the downhill move size in a probabilistic

way. The downhill move is more likely to be accepted if T and the move size are smaller.

Therefore, the importance of the parameter T in the performance of SIMANN

cannot be overstated. A smaller initial T0 might result in a step length too small, and the

function evaluations gathered by the algorithm are not enough to find the optima. The

choice of an optimal initial temperature T0, however, depends on the problem and trial

runs usually have to be performed in order to find the right T0. Because of this, we

performed ten different tests with SIMANN, each with a different initial temperature:

T0 = 10k, k = 1, . . . , 10 (6.47)

128

SIMANN also requires an initial guess, and in our tests this is chosen to be

kATc = 0.2, kt = 250, nt = 4, kl = 55, nl = 3 (6.48)

Note that this initial guess was chosen for Test 1 in the previous section and was shown to

result in unsatisfactory solutions from the local optimization schemes.

The results from GLOBAL and SIMANN, with different initial temperatures, are

shown in Table 6.5.

The GLOBAL algorithm finished after 4572 function evaluations. By default, it

outputs 20 local maxima found during the process, shown in Table 6.5 with decreasing

likelihoods. On the other hand, the result notes that there are too many clusters, implying

that there are a large number of local maxima, confirming the reason for the failure of

local optimization schemes: since the likelihood surface is multimodal, they converge to the

nearest local maximum and cannot escape, which is why the results depend on the initial

guesses.

Despite this, GLOBAL was able to find very good results for the parameter set.

The first three results have virtually the same likelihoods as the true parameter set. The

parameters themselves are also very close to the true values, except kATc, which might

imply that the likelihood function is not very sensitive to this parameter.

On the other hand, all SIMANN runs exceeded the limit of 5000 function

evaluations, which might be a result of the tight error tolerance (the variable EPS in

Table 6.4). As expected, the SIMANN runs starting with small initial temperature

(T0 < 104) result in parameter sets with very small likelihoods. When T0 = 104, SIMANN

converges to a good result, with likelihood only slightly smaller than that of the true

parameter sets. With T0 > 104, however, the results from SIMANN are worse.

It is important to point out, however, that even with the optimal initial

temperature of T0 = 104, the parameter set from SIMANN is not as good as the three best

129

results from GLOBAL. The latter also outputs the local maxima, which are important to

draw conclusions about the likelihood function itself, as opposed to only one best

parameter set as in SIMANN, and it does all this with less function evaluations.

Importantly, the input parameters that GLOBAL requires are not significant to the final

result, while SIMANN depends on some important input parameters which can only be set

up by experience, knowledge of the problem, or trial optimization runs.

Although GLOBAL seems to be superior to SIMANN for this problem, the same

conclusion cannot be drawn universally. GLOBAL in particular, and the

Boender-Rinnooy-Stougie-Timmer algorithm in general, will first sample parameter sets in

the given range, and then transform the parameter sets into groups around local maxima.

Clustering techniques are then employed to find neighborhoods of each local maximum,

and local optimization runs from each cluster can point to the global maximum. While

effective for problems with few parameters, other optimization algorithms can be more

effective when there are hundreds or more parameters to be found.

6.5.7 Sensitivity effect

Finally, we investigate how sensitive the likelihood function of the synthetic data is

with respect to each parameter in Figure 6.7. The true parameter set (6.37) was used to

generate the synthetic data, and the changes in the likelihood function when each

parameter varies around its true value (with the other four parameters fixed to their exact

numbers) are shown.

The likelihood function does not change much when kl or nl vary in their

neighborhoods. In comparison, the likelihood responds more strongly to changes in kt or

kATC . When nt increases from 1 to 1.56, however, the likelihood roughly increases two-fold

in its value, implying that the model is most sensitive to this parameter. This sensitivity

study may have important ramifications especially in parameter fitting, since not knowing

the sensitivity of the parameters may lead to the codes spending time calibrating the

non-sensitive parameters without getting a good result.

130

Figure 6.7: The sensitivity of the likelihood function of the synthetic data with respect to
each parameter around the parameter set kATc = 0.94, kt = 11, nt = 1.56, kl = 264, nl = 3.35.
The panels show the change in the likelihood function when there is a change in nt, nl, kt, kl
and kATc, respectively. The red squares correspond to the likelihood when the correct
parameters are used.

Figure 6.8: Comparison of the distributions at equilibrium (180hr) between the results from
the different tests and the synthetic data that they are fitting.

131

6.6 Conclusion

Synthetic biology is an effective approach to study how microbes and multicellular

organisms regulate their cell fate determination when the environments change or proper

development needs to be ensured. An investigation into the different properties of the

network requires a mathematical model that illuminates possible regulatory mechanisms,

for which a systematic approach to calibrating free parameters is required. The model can

then be cross-validated using other datasets or used to predict/refine outcomes of new

experiments.

Here we have investigated a mutual inhibitory gene network in Saccharomyces

cerevisiae, using the model from [3, 97]. The likelihood function is evaluated by using the

Krylov-FSP-SSA algorithm to solve the CME for the probability distributions given a

parameter set. The likelihood function is then maximized by different optimization codes.

This ensures that the solution results in a faithful portrayal of the evolution of the

probability distribution over time and therefore confirms the mathematical model.

We compared for the first time different optimization algorithms for parameter

fitting using maximum likelihood. There is still work to be done, as only one biological

problem is considered here. There are also many different optimization approaches, and a

more complete comparison between them for a variety of stochastic models will be

beneficial to the systems biology community, given the importance of parameter inference

in this field. The results in this work might be one step further towards establishing a

parameter inference method of reference in stochastic models.

From the numerical tests in Section 6.5, it is apparent that local optimization

schemes do not perform well for our purpose. This underlines the difficulty of fitting

stochastic models by maximum likelihood. The likelihood surface is often multimodal, and

therefore it is difficult for the local optimization algorithms to escape a local maxima.

Figure 6.8 offers a comparison of the marginal distributions for both proteins from

the three tests with local optimization algorithms at 180hr, where the system reaches

132

equilibrium and clearly shows a bimodal pattern. Since the results from PRAXIS and

NELMIN do not differ much in the resulted distributions even though the parameter sets

are not the same, we only use the results from PRAXIS. The marginal distributions from

test 1 do not match the data, with the TetR distribution being inconsistent with the

synthetic data and the LacI distibution showing unimodality instead of bimodality. On the

other hand, tests 2 and 3 show a bimodality in agreement with the synthetic data, although

there is a slight difference in the height of the peaks of the probability distribution. Note

that each peak represents one mode, or one possible fate that the cell can end up in.

In practice, choosing a starting parameter set for each local optimization run can be

a challenging task. Usually, a range for each parameter is chosen so that they are

biologically relevant. The parameter search is then conducted by randomly choosing

different initial guesses for the parameters in these ranges, leading to thousands of function

evaluations per optimization run, for which only the best solution is recorded at the end.

This task can be done in an embarrassingly parallel code, since the optimization runs are

independent from each other. As can be seen from Table 6.3, the results are often

satisfactory when the starting parameter guess is good. It is thus possible to have

satisfactory results by employing the local optimization schemes in a parallel multi-start

fashion.

On the other hand, the numerical comparison showed that global optimization

algorithms produce better results than local optimization schemes, at the expense of more

function evaluations. Only two global optimization schemes were considered in this study,

of which GLOBAL [120, 121, 122] proved to be the better choice. This of course might

change when a different biological model is tested, as GLOBAL is effective only for

problems with few unknown parameters.

Our comparison considered only optimization algorithms in FORTRAN that are

freely available. There have been other works comparing local and global optimization

methods [113, 114] but the test cases in those works belong to different classes from that

133

studied here. A broader and deeper comparison involving more biological models and more

optimization algorithms might be essential to the biomathematical community given the

importance of the parameter fitting problem.

134

CHAPTER 7

CONCLUSIONS

The chemical master equation (CME) is a popular approach for modeling the

stochastic interactions within a biological cell, and the finite state projection (FSP) is an

efficient technique to solve it. This dissertation has reviewed many FSP variants for

approximating the CME solution when the reaction rates are constant, as well as

investigated novel methods for the CME with time-varying rates. We also established the

theoretical background for the FSP through the framework of inexact Krylov methods, and

examined applications in delay CME and parameter inference involving local and global

optimization schemes.

New questions arise from chapters 5 and 6. First, parallelism has not been

considered in the parameter inference. It can be effective in the parameter search which

has to be conducted by randomly choosing different initial guesses for the parameters,

leading to thousands of function evaluations per optimization run, for which only the best

solution is recorded at the end. This task can be done in an embarrassingly parallel code,

since the optimization runs are independent from each other, allowing a parallel multi-start

search. Second, the sensitivity of the model parameters in the likelihood function needs to

be explored in the context of solving the CME. This might prove helpful in developing new

parameter fitting schemes for stochastic biological models. Third, even though a

Magnus-based integration method has been developed in chapter 5 and shown to be

efficient for solving certain stiff problems, more numerical comparisons must be made to

confirm this phenomenon. It might also be possible to parallelize the algorithm in order to

fully leverage the power of modern supercomputers. For instance, the SSA runs performed

to expand the state space can run in parallel as well, which would reduce the runtime.

135

Another promising target for parallelization is the computation of the Krylov subspace.

The Magnus-based algorithm can also be combined with the tensor format, which has been

successfully applied for solving a CME with constant reaction rates [128].

136

REFERENCES

[1] R. B. Sidje and H. Vo. Solving the chemical master equation by a fast adaptive finite
state projection based on the stochastic simulation algorithm. Mathematical
Biosciences, 269:10–16, 2015.

[2] B. Munsky. Quantitative biology from molecular to cellular systems, chapter Modeling
cellular variability, pages 234–266. Taylor and Francis group, New York, 2012.

[3] M. Wu, R. Su, X. Li, T. Ellis, Y.-C. Lai, and X. Wang. Engineering of regulated
stochastic cell fate determination. PNAS, 110(26):10610–10615, 2013.

[4] J. Goutsias and G. Jenkinson. Markovian dynamics on complex reaction networks.
Phys. Rep., 529(2):199–264, 2013.

[5] D. T. Gillespie. A rigorous derivation of the chemical master equation. Physica A,
188(1-3):404–425, 1992.

[6] D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys., 22(4):403–434, 1976.

[7] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting
systems. J. Chem. Phys., 115(4):1716–1733, 2001.

[8] Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for the
tau-leaping simulation method. J. Chem. Phys., 124(4):044109, 2006.

[9] Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scale stochastic simulation
algorithm. J. Chem. Phys., 122(1):14116, 2005.

[10] B. Munsky and M. Khammash. The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys., 124(4):044104, 2006.

[11] K. Burrage, M. Hegland, S. Macnamara, and R. B. Sidje. A Krylov-based finite state
projection algorithm for solving the chemical master equation arising in the discrete
modelling of biological systems. In Markov Anniversary Meeting: an international
conference to celebrate the 150th anniversary of the birth of A.A. Markov, pages
1–18, 2006.

[12] B. Munsky and M. Khammash. A multiple time interval finite state projection
algorithm for the solution to the chemical master equation. J. Comput. Phys.,
226(1):818–835, 2007.

137

[13] G. Neuert, B. Munsky, R. Z. Tan, L. Teytelman, M. Khammash, and A. v.
Oudenaarden. Systematic identification of signal-activated stochastic gene
regulation. Science, 339(6119):584–587, 2013.

[14] K. N. Dinh and R. B. Sidje. Understanding the finite state projection and related
methods for solving the chemical master equation. Physical biology, 13(035003), 2016.

[15] T. Jahnke and W. Huisinga. Solving the chemical master equation for
monomolecular reaction systems analytically. J. Math. Biol., 54(1):1–26, 2007.

[16] Y. Cao, D. T. Gillespie, and L. R. Petzold. Avoiding negative populations in explicit
Poisson tau-leaping. J. Chem. Phys., 123:054104, 2005.

[17] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis. Binomial distribution based
tau-leap accelerated stochastic simulation. J. Chem. Phys., 122(2):24112, 2005.

[18] B. Munsky. Modeling cellular variability, chapter 11, pages 233–266. Taylor and
Francis, Inc, 2011.

[19] V. Wolf, R. Goel, M. Mateescu, and T. A. Henzinger. Solving the chemical master
equation using sliding windows. BMC Syst. Biol., 4:42, 2010.

[20] V. Sunkara and M. Hegland. An optimal finite state projection method. Procedia
Comput. Sci., 1(1):1579–1586, 2010.

[21] V. Sunkara. Analysis and numerics of the Chemical Master Equation. PhD thesis,
Australian National University, 2013.

[22] S. Peles, B. Munsky, and M. Khammash. Reduction and solution of the chemical
master equation using time scale separation and finite state projection. J. Chem.
Phys., 125(20):204104, 2006.

[23] M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth. A solver for the
stochastic master equation applied to gene regulatory networks. J. Comput. Appl.
Math., 205:708–724, 2007.

[24] J. J. Tapia, J. R. Faeder, and B. Munsky. Adaptive coarse-graining for transient and
quasi-equilibrium analyses of stochastic gene regulation. In Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on, pages 5361–5366, 2012.

[25] R. B. Sidje, K. Burrage, and S. MacNamara. Inexact uniformization method for
computing transient distributions of Markov chains. SIAM J. Sci. Comput.,
29(6):2562–2580, 2007.

[26] W. K. Grassmann. Transient solutions in markovian queueing systems. Comput.
Oper. Res., 4(1):47–53, 1977.

[27] D. Gross and D. R. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Oper. Res., 32(2):343, 1982.

138

[28] M. Hegland and J. Garcke. On the numerical solution of the chemical master
equation with sums of rank one tensors. In ANZIAM J., volume 52, pages
C628–C643, 2011.

[29] V. Wolf. Modelling of Biochemical Reactions by Stochastic Automata Networks.
Electron. Notes Theor. Comput. Sci., 171(2):197–208, 2007.

[30] V. Kazeev, M. Khammash, M. Nip, and C. Schwab. Direct solution of the Chemical
Master Equation using quantized tensor trains. PLoS Comput. Biol., 10(3), 2014.

[31] S. Dolgov and B. N. Khoromskij. Tensor-product approach to global
time-space-parametric discretization of chemical master equation. Preprint 68,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2012.

[32] A. Cichocki. Era of big data processing: a new approach via tensor networks and
tensor decompositions. arXiv, pages 1–30, 2014.

[33] S. Dolgov and B. Khoromskij. Simultaneous state-time approximation of the
chemical master equation using tensor product formats. arXiv, 2013.

[34] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2008.

[35] S. MacNamara, K. Burrage, and R. B. Sidje. Multiscale modeling of chemical
kinetics via the Master Equation. Multiscale Model. Simul., 6(4):1146–1168, 2008.

[36] T. Tian and K. Burrage. Stochastic models for regulatory networks of the genetic
toggle switch. Proc. Natl. Acad. Sci. USA, 103(22):8372–8377, 2006.

[37] R. B. Sidje. Expokit: A software package for computing matrix exponentials. ACM
Trans. Math. Softw., 24(1):130–156, 1998.

[38] B. Munsky, Z. Fox, and G. Neuert. Integrating single-molecule experiments and
discrete stochastic models to understand heterogeneous gene transcription dynamics.
Methods, 85:12–21, 2015.

[39] G. B. Leenders and J. A. Tuszynski. Stochastic and deterministic models of cellular
p53 regulation. Front. Oncol., 3:64, 2013.

[40] S. Ramaswamy, R. Lakerveld, P. I. Barton, and G. Stephanopoulos. Controlled
formation of nanostructures with desired geometries: Part 3. dynamic modeling and
simulation of directed self-assembly of nanoparticles through adaptive finite state
projection. Ind. Eng. Chem. Res., 54(16):4371–4384, 2015.

[41] K. N. Dinh and R. B. Sidje. Analysis of inexact krylov subspace methods for
approximating the matrix exponential. Mathematics and Computers in Simulation,
138:1–13, 2017.

139

[42] A. Bouras and V. Fraysse. Inexact matrix-vector products in Krylov methods for
solving linear systems: A relaxation strategy. SIAM J. Matrix Anal. Appl.,
26(3):660–678, 2005.

[43] J.V.D. Eshof and G.L.G. Sleijpen. Inexact Krylov subspace methods for linear
systems. SIAM J. Matrix Anal. Appl., 26(1):125–153, 2004.

[44] V. Simoncini and D.B. Szyld. Theory of inexact Krylov subspace methods and
applications to scientific computing. SIAM J. Sci. Comput., 25(2):454–477, 2003.

[45] R.B. Sidje and N. Winkles. Evaluation of the performance of inexact GMRES. J.
Comp. Appl. Math., 235:1956–1975, 2011.

[46] E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by Krylov
approximation methods. SIAM J. Sci. Stat. Comput., 13(5):1236–1264, 1992.

[47] Y. Saad. Analysis of some Krylov subspace appproximations to the matrix
exponential operator. SIAM J. Numer. Anal., 29(1):209–228, 1992.

[48] M. Hochbruck and C. Lubich. On Krylov subspace approximations to the matrix
exponential operator. SIAM J. Numer. Anal., 34:1911–1925, 1997.

[49] M.A. Botchev, V. Grimm, and M. Hochbruck. Residual, restarting and Richardson
iteration for the matrix exponential. SIAM J. Sci. Comput., 35(3):A1376–A1397,
2013.

[50] L. Giraud, S. Gratton, and J. Langou. Convergence in backward error of relaxed
GMRES. SIAM J. Sci. Comput., 29(2):710–728, 2007.

[51] N.J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia,
PA, USA, 2008.

[52] A.H. Al-Mohy and N.J. Higham. Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM J. Sci. Comput.,
33(2):488–511, 2011.

[53] R.B. Sidje. Inexact uniformization and GMRES methods for large Markov chains.
Num. Lin. Alg. Appl., 18:947–960, 2011.

[54] J. Goutsias. Quasiequilibrium approximation of fast reaction kinetics in stochastic
biochemical systems. J. Chem. Phys., 122(18):184102, May 2005.

[55] E. Stirk, C. Molina-Paris, and H. van den Berg. Stochastic niche structure and
diversity maintenance in the T cell repertoire. Journal of theoretical biology,
255:237–249, 2008.

[56] T. Vo and C. Priami. Simulation of biochemical reactions with time-dependent rates
by the rejection-based algorithm. The journal of chemical physics, 143(054104), 2015.

140

[57] R. M. Anderson. Population dynamics of infectious diseases: theory and applications.
Chapman and Hall, London-New York, 1982.

[58] D. J. Daley and J. Gani. Epidemic modeling: an introduction. Cambridge University
Press, 2005.

[59] N. Bacaër. On the stochastic SIS epidemic model in a periodic environment. Journal
of mathematical biology, 71(2):491–511, 2015.

[60] P. Bader, S. Blanes, F. Casas, and E. Ponsoda. Efficient numerical integration of
Nth-order non-autonomous linear differential equations. Journal of computational
and applied mathematics, 291:380–390, 2016.

[61] A. Leier and T. T. Marquez-Lago. Delay chemical master equation: direct and
closed-form solutions. Proceedings of the Royal Society of London A, 471(20150049),
2015.

[62] K. N. Dinh and R. B. Sidje. An adaptive magnus expansion method for solving the
chemical master equation with time-dependent propensities. Journal of Coupled
Systems and Multiscale Dynamics, 2018.

[63] K. N. Dinh and R. B. Sidje. A comparison of the Magnus expansion and other
solvers for the chemical master equation with variable rates. AMMCS 2017
Conference proceedings, 2018.

[64] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
physical chemistry, 81:2340–2361, 1977.

[65] R. Purtan and A. Udrea. A modified Stochastic Simulation Algorithm for
time-dependent intensity rates. In 19th International conference on control systems
and computer science, 2013.

[66] Y. Niu, K. Burrage, and L. Chen. Modelling biochemical reaction systems by
stochastic differential equations with reflection. Journal of theoretical biology,
396:90–104, 2016.

[67] K. Burrage, P. Burrage, S. Leier, and T. Marquez-Lago. Stochastic processes,
multiscale modeling, and numerical methods for computational cellular biology,
chapter A review of stochastic and delay simulation approaches in both time and
space in computational cell biology. Springer, 2017.

[68] W. Magnus. On the exponential solution of differential equations for a linear
operator. Communications on pure and applied mathematics, 7(4):649–673, 1954.

[69] A. Iserles, S. P. Nørsett, and A. F. Rasmussen. Time symmetry and high-order
Magnus methods. Applied numerical mathematics, 39(3-4):379–401, 2001.

[70] S. Blanes, F. Casas, J. A. Oteo, and J. Ros. The Magnus expansion and some of its
applications. Physics reports, 470:151–238, 2009.

141

[71] A. Iserles, A. Marthinsen, and S. P. Nørsett. On the implementation of the method
of Magnus series for linear differential equations. BIT Numerical mathematics,
39(2):281–304, 1999.

[72] N. Aparicio, S. Malham, and M. Oliver. Numerical evaluation of the evans function
by Magnus integration. BIT Numerical mathematics, 45(2):219–258, 2005.

[73] K. Burrage. Parallel and sequential methods for ordinary differential equations.
Clarendon Press, 1995.

[74] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I,
nonstiff problems. Springer, 1987.

[75] G. Wanner and E. Hairer. Solving ordinary differential equations II, stiff and
differential algebraic problems. Springer, 1991.

[76] G. Hall and A. Usman. Modified order and stepsize strategies in Adams codes.
Journal of computational and applied mathematics, 11:113–122, 1999.

[77] L. F. Shampine and M. K. Gordon. Computer solution of ordinary differential
equations: the initial value problem. W.H. Freeman and Co., 1975.

[78] R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: a suite of Runge–Kutta
codes for the initial value problem for ODEs, Softreport 91-1. Technical report,
Math. Dept., Southern Methodist University, Dallas, TX, USA, 1991.

[79] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE: A variable-coefficient ODE
solver. SIAM journal on scientific and statistical computing, 10(5):1038–1051, 1989.

[80] Y. Cai, X. Peng, Q. Li, and K. Wang. A numerical solution to the nonlinear point
kinetics equations using Magnus expansion. Annals of nuclear energy, 89:84–89, 2016.

[81] S. MacNamara and K. Burrage. Stochastic modeling of naive T cell homeostasis for
competing clonotypes via the master equation. Multiscale Modeling & Simulation,
8(4):1325–1347, 2010.

[82] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review, 45(1):1–46, 2003.

[83] H. Vo and R. B. Sidje. Approximating the large sparse matrix exponential using
incomplete orthogonalization and Krylov subspaces of variable dimension. Numerical
linear algebra with applications, 24(3):e2090, 2017.

[84] R. Cools. Constructing cubature formulae: the science behind the art. Acta
Numerica, 6:1–54, 1997.

[85] P. Davis and P. Rabinowitz. Methods of numerical integration. Dover publications,
Inc., 1984.

142

[86] R.B. Sidje and W.J. Stewart. A numerical study of large sparse matrix exponentials
arising in Markov chains. Comput. Stat. Data Anal., 29:345–368, 1999.

[87] K. N. Dinh and R. B. Sidje. A comparison of the Magnus expansion and other
solvers for the chemical master equation with time-dependent propensities. (in
preparation), 2017.

[88] R. Johnson and B. Munsky. The finite state projection approach to analyze
dynamics of heterogeneous populations. Physical Biology, 14(3), 2017.

[89] K. N. Dinh and R. B. Sidje. An application of the krylov-fsp-ssa method to
parameter fitting with maximum likelihood. Physical Biology, 14(065001), 2017.

[90] T. Tian, S. Xu, J. Gao, and K. Burrage. Simulated maximum likelihood method for
estimating kinetic rates in gene expression. Bioinformatics, 23(1):84–91, 2007.

[91] S. Poovathingal and R. Gunawan. Global parameter estimation methods for
stochastic biochemical systems. BMC bioinformatics, 11:414, 2010.

[92] B. Daigle Jr., M. Roh, L. Petzold, and J. Niemi. Accelerated maximum likelihood
parameter estimation for stochastic biochemical systems. BMC bioinformatics,
13(68), 2012.

[93] Y. Wang, S. Christley, E. Mjolsness, and X. Xie. Parameter inference for discretely
observed stochastic kinetic models using stochastic gradient descent. BMC Systems
biology, 4(99), 2010.

[94] A. Horvath and D. Manini. Parameter estimation of kinetic rates in stochastic
reaction networks by the em method. In Proceedings of the 2008 International
conference on Biomedical engineering and informatics, volume 1, pages 713–717,
2008.

[95] S. Reinker, R. Altman, and J. Timmer. Parameter estimation in stochastic
biochemical reactions. Systems biology, 153(4):168–178, 2006.

[96] Z. Fox, G. Neuert, and B. Munsky. Finite state projection based bounds to compare
chemical master equation models using single-cell data. Journal of chemical physics,
145(7):074101, 2016.

[97] T. Ellis, X. Wang, and J. J. Collins. Diversity-based, model-guided construction of
synthetic gene networks with predicted functions. Nature biotechnology, 27:465–471,
2009.

[98] H. McAdams and A. Arkin. It’s a noisy business! genetic regulation at the
nanomolar scale. Trends in genetics, 15(2):65–69, 1999.

[99] D. Fange and J. Elf. Noise-induced min phenotypes in e. coli. PLoS Computational
biology, 2(e80), 2006.

143

[100] M. Samoilov, S. Plyasunov, and A. Arkin. Stochastic amplification and signaling in
enzymatic futile cycles through noise-induced bistability with oscillations. PNAS,
102(7):2310–2315, 2005.

[101] M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403:335–338, 2000.

[102] A. Colman-Lerner, A. Gordon, E. Serra, T. Chin, O. Resnekov, D. Endy, C. Pesce,
and R. Brent. Regulated cell-to-cell variation in a cell-fate decision system. Nature,
437:699–706, 2005.

[103] I. Golding, J. Paulsson, S. Zawilski, and E. Cox. Real-time kinetics of gene activity
in individual bacteria. Cell, 123(6):1025–1036, 2005.

[104] J. Yu, J. Xiao, X. Ren, K. Lao, and X. Lie. Probing gene expression in live cells, one
protein molecule at a time. Science, 311(5767):1600–1603, 2006.

[105] T. Gardner, C. Cantor, and J. Collins. Construction of a genetic toggle switch in
escherichia coli. Nature, 403:339–342, 2000.

[106] E. Yang, E. van Nimwegen, M. Zavolan, N. Rajewsky, M. Schroeder, M. Magnasco,
and J. Darnell Jr. Decay rates of human mrnas: correlation with functional
characteristics and sequence attributes. Genome research, 13(8):1863–1872, 2003.

[107] I. Chou and E. Voit. Recent developments in parameter estimation and structure
identification of biochemical and genomic systems. Mathematical Biosciences,
219(2):57–83, 2009.

[108] D. Wilkinson. Stochastic modelling for quantitative description of heterogeneous
biological systems. Nature, 10:122–133, 2009.

[109] B. Munsky and M. Khammash. Identification from stochastic cell-to-cell variation: a
genetic switch case study. IET systems biology, 4(6):356–366, 2010.

[110] H. Xu, S. Skinner, A. Sokac, and I. Golding. Stochastic kinetics of nascent rna.
Physical review letters, 117(128101), 2016.

[111] R. Boys, D. Wilkinson, and T. Kirkwood. Bayesian inference for a discretely
observed stochastic kinetic model. Statistics and computing, 18(2):125–135, 2008.

[112] A. Golightly and D. Wilkinson. Bayesian sequential inference for stochastic kinetic
biochemical network models. Journal of computational biology, 13(3):838–851, 2006.

[113] L. Rios and N. Sahinidis. Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization,
56:1247–1293, 2013.

[114] C. Moles, P. Mendes, and J. Banga. Parameter estimation in biochemical pathways:
a comparison of global optimization methods. Genome research, 13:2467–2474, 2003.

144

[115] R. Brent. Algorithms for finding zeros and extrema of functions without calculating
derivatives. PhD thesis, Department of Computer science, Stanford University, 1971.

[116] J. Nelder and R. Mead. A simplex method for function minimization. The computer
journal, 7(4):308–313, 1965.

[117] R. O’Neill. Algorithm as 47: function minimization using a simplex procedure.
Journal of the Royal statistical society - series C (Applied statistics), 20(3):338–345,
1971.

[118] M. J. D. Powell. The newuoa software for unconstrained optimization without
derivatives. Technical Report NA05, Department of Applied Mathematics and
Theoretical Physics, Cambridge University, 2004.

[119] M. J. D. Powell. Least frobenius norm updating of quadratic models that satisfy
interpolation conditions. Mathematical programming, 100:183–215, 2004.

[120] C. Boender, A. Rinnooy Kan, G. Timmer, and L. Stougie. A stochastic method for
global optimization. Mathematical programming, 22(1):125–140, 1982.

[121] G. Timmer. Global optimization: a stochastic approach. PhD thesis, Erasmus
University Rotterdam, 1984.

[122] T. Csendes. Nonlinear parameter estimation by global optimization - efficiency and
reliability. Acta Cybernetica, 8(4):361–370, 1988.

[123] W. Goffe, G. Ferrier, and J. Rogers. Global optimization of statistical functions with
simulated annealing. Journal of econometrics, 60:65–99, 1994.

[124] W. Goffe. Simann: a global optimization algorithm using simulated annealing.
Studies in nonlinear dynamics and econometrics, 1(3):169–176, 2007.

[125] M. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems
with many species and many channels. Journal of physical chemistry A,
104(9):1876–1889, 2000.

[126] Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation
algorithm for chemically reacting systems. Journal of chemical physics, 121(9):4059,
2004.

[127] J. McCollum, G. Peterson, C. Cox, M. Simpson, and N. Samatova. The sorting
direct method for stochastic simulation of biochemical systems with varying reaction
execution behavior. Computational biology and chemistry, 30(1):39–49, 2006.

[128] H. D. Vo and R. B. Sidje. An adaptive solution to the chemical master equation
using tensors. Journal of chemical physics, 147:044192, 2017.

[129] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti. Scatter search
and local nlp solvers: a multistart framework for global optimization. INFORMS
Journal on computing, 19(3):328–340, 2007.

145

[130] F. Glover. Artificial evolution, volume 1363, chapter A template for scatter search
and path relinking, pages 13–54. Springer, 1998.

[131] A. Khachaturyan, S. Semenovsovskaya, and B. Vainshtein. The thermodynamic
approach to the structure analysis of crystals. Acta Crystallographica, A37:742–754,
1981.

[132] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[133] V. Cerny. Thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm. Journal of optimization theory and applications,
45(1):41–51, 1985.

[134] S. Semenovskaya, K. Khachaturyan, and A. Khachaturyan. Statistical mechanics
approach to the structure determination of a crystal. Acta Crystallographica,
A41:268–273, 1985.

146

