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Abstract
Event-free and overall survival remain poor for patients with acute myeloid
leukemia. Chemoresistant clones contributing to relapse arise from minimal
residual disease (MRD) or newly acquired mutations. However, the dynamics
of clones comprising MRD is poorly understood. We developed a predictive
stochastic model, based on a multitype age-dependent Markov branching
process, to describe how random events in MRD contribute to the heterogeneity
in treatment response. We employed training and validation sets of patients who
underwent whole-genome sequencing and for whom mutant clone frequencies
at diagnosis and relapse were available. The disease evolution and treatment
outcome are subject to stochastic fluctuations. Estimates of malignant clone
growth rates, obtained by model fitting, are consistent with published data.
Using the estimates from the training set, we developed a function linking MRD
and time of relapse with MRD inferred from the model fits to clone frequencies
and other data. An independent validation set confirmed our model. In a third
dataset, we fitted the model to data at diagnosis and remission and predicted the
time to relapse. As a conclusion, given bone marrow genome at diagnosis and
MRD at or past remission, the model can predict time to relapse and help guide
treatment decisions to mitigate relapse.
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1 INTRODUCTION

Acute myeloid leukemia (AML) is the most common
myeloid malignancy with over 21,000 cases diagnosed
annually in the United States [1]. Rates of event-free and
overall survival are poor. Despite stem cell transplanta-
tion and new drug approvals, chemoresistance and relapse
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remain major obstacles to survival for those with AML
[2, 3]. Poor outcome factors include older age, complex
cytogenetics, prior history of chemotherapy or myelodys-
plastic syndromes, and specific gene mutations [4]. Mini-
mal residual disease (MRD) is emerging as an important
predictor of relapse and decreased survival for individu-
als with AML [5, 6]. The genetic and immunophenotypic
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STATEMENT OF SIGNIFICANCE

MRD remains the chief obstacle to curing AML.
Stochastic, not deterministic, events produce
small clones constituting MRD. Our model pre-
dicts time to relapse and mandates intervention,
such as change in treatment.

diversity of AML makes testing for MRD challenging [7]
and requires novel approaches.
MRD measurement must predict relapse better than

existing risk stratification with thresholds of MRD estab-
lished empirically. Different treatments and different
leukemogenic drivers contribute to the empirical defini-
tion. The currently accepted definition for MRD in AML is
10−4 for multiparameter flow cytometry or 10−5 for qPCR.
Estimated 5-year overall survivalwas 68% for patientswith-
out MRD versus 34% for those with MRD, for an average
hazard ratio of 0.36 (95% credible interval = 0.33–0.39) [2].
Different mathematical models were proposed for the

emergence relapse and treatment outcomes of AML and
other hematologic malignancies [8–17]. Two types of
modeling are commonly used: deterministic and stochas-
tic [10]. Opinions are split as to whether the stochastic
models of leukemogenesis and evolution of leukemia pre-
and post-treatment are more relevant than deterministic
ones [10, 18, 19]. Deterministic models do not account
for the unpredictability of clonal heterogeneity in the
genomic landscapes [9], although some assign different
parameters to each individual [14]. Unpredictability of
AML development may be due to randomness in the times
at which driver mutations arise and fromwhich aggressive
cell clones originate [12, 20]. Hence, our specific objective
is to characterize the range of treatment outcomes by
taking into account that when leukemic cell population
is reduced to very low numbers, survival of any particular
clone is stochastic. Even with the same parameters of
disease state such as blast percentages in bone marrow
(BM) and peripheral blood, leukemic clonal percentages at
diagnosis, and treatment responses such as chemotherapy-
induced cell death rate (Table S1), a small residual pop-
ulation of AML cells may or may not regrow. As MRD
is defined as the presence of leukemic cells detected by
molecular assays, such as flow cytometry or PCR, below
the sensitivity of morphologic measurement, it is of clin-
ical interest to verify if its level is a predictor of the time to
relapse (TTR). Stochastic modeling seems a relevant tool.
We present a stochastic model of proliferation and dif-

ferentiation of hemopoietic stem cells (HSC) that predicts
TTR following AML chemotherapy, informed by individ-

ual patient’s leukemic BM clonal structure at diagnosis
and relapse, and BM and peripheral blood cellularity, and
blast fraction. Performance of the model vis-à-vis relapse
data is measured by model-derived MRD–TTR character-
istic, in independent training and validation datasets. The
model demonstrates that the scenarios of effects of treat-
ment depend to large extent on chance. Finally, a recent
independent third dataset, in which BM clonal structure
was observed at diagnosis, remission, and relapse, is used
to predict the relapse time and BM clonal structure at
relapse, based on observations at diagnosis and remission.

2 MATERIALS ANDMETHODS

2.1 Patient data and informed consent

We used de-identified patient data from Ding et al. [21]
and Shlush et al. [22] for the training and validation
study, respectively. The model’s ability to predict TTP is
tested using a third dataset from Ediriwickrema et al.
[23]. Written informed consent was obtained for the
approved protocols by the Washington University Medical
School Institutional Review Board, the Research Ethics
Board of the University of Toronto Health Network, and
the Stanford Institutional Review Board of the Stanford
Medical Center. Information about the patient data is
detailed in Table S3 and Figure S1.

2.2 Mathematical model

Our stochastic model of proliferation and competition of
normal and leukemic cells is a multitype age-dependent
Markov branching process [24]. Its structure is schemati-
cally depicted in Figure 1A,B. Themodel is designed so that
its expected value trajectories are approximately identical
to the deterministic model of [14]. Proliferation of cells
in each clone occurs in linearly ordered compartments
of mitotic and mature cells. This is an approximation of
more complex hierarchies in normal and malignant BM
[14]. Each event in cell’s lifetime (division, differentiation,
or death) is characterized by independent exponentially
distributed waiting times. Because the waiting times are
random, the order in which events occur differs among
simulations. This results in variable outcomes under the
same conditions and may contribute to interpatient het-
erogeneity. Identically as in [14], the model also involves
growth regulation feedbacks, amounting to growth slow-
down of both normal and malignant cells if BM becomes
crowded. Parameter fitting for the stochastic model was
performed by first approximating it with expected value
ordinary differential equations (ODEs).
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F IGURE 1 (A) Sequence of events in acute myeloid leukemia, including carcinogenesis, diagnosis followed by chemotherapy, and
relapse. Leukemic clones arise and compete against each other and healthy hematopoietic clones. Our mathematical model starts at diagnosis
and does not include carcinogenesis. (B) Schematic of the model. Normal and malignant myeloid cells are dividing and maturing, as
described by a stochastic population process (see Supporting Information Data). Clones of malignant cells are considered separate
subpopulations. Negative feedback controlling the total myeloid cell population in blood downregulates all clones’ self-renewal rates if blood
is overpopulated. Another negative feedback controlling the total myeloid population in bone marrow upregulates the death rates of all
compartments in bone marrow if it is overpopulated. Feedback configuration assumed follows closely [14]. (C) Parameter estimates for all
patients in the training set. One hundred parameter sets were found for each patient starting from randomly selected initial conditions of the
fitting procedure. Parameter sets corresponding to clones present at both diagnosis and relapse form curves in the parameter space, while
those corresponding to clones absent at relapse display a more complicated pattern. For each patient, three parameter sets were chosen for
stochastic simulations, corresponding to low, medium, and high renewal rates (left triangles, circles, and right triangles)

2.3 Stochastic model for proliferation
and competition of normal and leukemic
cells

Proliferation of cells in each clone is represented by an
ordered sequence of different compartments; Figure 1B.
The two-compartment model for the hematopoietic clones
that we adopted was established in [25]. The healthy clone
is divided intomitotic compartment 𝑐1(𝑡) andmature com-
partment 𝑐2(𝑡). The mitotic cell compartment, represent-
ing the more complex multistage differentiation process of
hematopoietic stem cells (HSCs), hematopoietic progeni-
tor cells (HPCs), and precursor cells, is located in the BM.
Mitotic cells can divide into two daughter cells at the pro-
liferation rate 𝑝c, and each of the daughter cells is either a
new mitotic cell or a mature cell. The fraction of daughter
cells returning to themitotic cell compartment is called the
self-renewal rate 𝑎c. Themature cell compartment consist-
ing of neutrophil granulocytes, a major subtype of white
blood cells, is located in the blood.Mature cells die at a con-
stant rate 𝑑c. Each leukemic clone, as detected by sequenc-
ing data, also consists of two compartments: mitotic
population 𝑙1(𝑡) in BM, and mature population 𝑙2(𝑡) in
blood. The rules determining its divisions, differentiations,

and deaths are similar as in the hematopoietic clone, with
proliferation rate 𝑝𝑙, renewal rate 𝑎𝑙, and death rate 𝑑𝑙.
There are two feedback systems governing the popula-
tions in blood and BM. The first feedback system reacts
to overpopulating in the blood by downregulating the
self-renewal rates of the hematopoietic and all leukemic
clones by a factor of

𝑠 (𝑡) =
1

1 + 𝑘 ⋅ (𝑐2 (𝑡) + 𝑙3 (𝑡))
. (1)

The second feedback system controls the total popula-
tion in the BM:

𝑥 (𝑡) = 𝑐1 (𝑡) + 𝑙1 (𝑡) + 𝑙2 (𝑡) (2)

and if this population is too high, the death rates of all com-
partments in bone are increased by

d (𝑥 (𝑡)) = 𝐴1 ⋅ max
(
0, 𝑥 (𝑡) − 𝐴2 ⋅ 𝑐1

)
. (3)

Finally, treatment drugs used in many chemotherapy
protocols are characterized by increased killing of cells in
the DNA synthesis phase of the cell cycle. Therefore, dur-
ing treatment, the death rates of mitotic cells are increased
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by factors proportional to their proliferation rates:

𝑑c = … + 𝑘c ⋅ 𝑝
c, (4)

𝑑l = … + 𝑘l ⋅ 𝑝
l. (5)

If any clonal mitotic population decreases below one cell
during the time course, the clone is marked as dead and
remains 0 until relapse. We assume that chemotherapy
kills leukemic clones at a higher rate than the normal
clone, and therefore 𝑘l > 𝑘c. Furthermore, we simplify the
model by assuming a fixed ratio between the killing rates
for all patients. The ratio 𝑘l ∶ 𝑘c = 5 ∶ 1 was found to
result in realistic behavior of the disease trajectories. The
additional death rates during treatments are therefore 𝑘l =
5 ⋅ 𝛼 and 𝑘c = 𝛼, where 𝛼 is the strength of chemotherapy.
There are two requirements for 𝛼: (a) the total leukemic
population must be repressed to <5% of total cell popu-
lation in BM, as all patients in the datasets achieve com-
plete remission; and (b) the leukemic population cannot
be depleted, as the patients eventually relapse. We chose
the parameter 𝛼 for each patient before parameter fitting
by sampling several values and tested if proliferation rates
and self-renewal rates can be fitted and satisfy the two con-
ditions within a realistic timeframe.
Further details of the model are given in the online

Supporting Information Methods, in the Expected value
approximation for fitting the stochastic model section, and
subsequent sections.

2.4 Hill function depicting dependence
of TTR onMRD

The MRD–TTR dependence summarizes predictions
of our model. Hill function can fit a wide spectrum of
“sigmoidal” (switching from concave to convex) or
“non-sigmoidal” (convex) functions tending to 0 at
infinite time and is among the most parsimonious
functions of this type. We used the shifted form
TTR = 𝐴∕(𝐵 + (log(MRD) − 𝐶)

𝑛
) with constants 𝐴,

𝐵, 𝐶, and 𝑛 estimated from data. The MRD–TTR Hill
function that is used to predict TTR based on MRD level
is estimated based on the training dataset from Ding et al.
[21]. We then used the validation dataset from Shlush
et al. [22] to test the prediction, by simulating the MRD
(not included in the data) and used it to see how the
TTR fits the Hill curve. Finally, we used the dataset from
Ediriwickrema et al. [23], which includes both clinically
measured MRD and observed TTR, to compare these to
the Hill function developed in the training step.
Further details of methods used are found in the online

Supporting Information Methods.

2.5 Code availability

The codes used in this study, written in Fortran and Mat-
lab, are available at https://github.com/dinhngockhanh/
stochasticMRDinAML.

3 RESULTS

We consider the time interval between diagnosis and
initial relapse that includes cytotoxic chemotherapy,
chemotherapy-induced myelosuppression and decrease in
leukemic cells, nonleukemicmarrow recovery, and growth
of the leukemic clones due to refractory or relapsed AML.
Figure 1A depicts a simplified sequence of events.
In this work, we assumed that no additional clones arise

by mutation after diagnosis, as was suggested in [6, 26,
27]. It does not preclude new mutations arising in these
clones, but given that clones were identified based on bulk
sequencing and variant clustering in the original publi-
cations, this assumption seems justifiable as a first-order
approximation. Underlying our model are assumptions on
growth, differentiation, and competition of normal and
leukemic clones [14], as depicted in Figure 1B and detailed
inMethods.
To train the model, we employed clonal percentages

at diagnosis and relapse from mutational data of six
patients recorded in The Cancer Genome Atlas (TCGA)
and the Genotypes and Phenotypes (dbGaP) databases
[21]. Paucity of serial, paired sequencing data is a serious
limitation. In about 200 TCGA cases of AML sequenced
at diagnosis, 20 patients were also sequenced at relapse,
and only six had BM and peripheral blood cell counts. To
supplement these numbers, we included a validation set,
a subset of five patients from Shlush et al. [22]. We also
used the model to predict TTR based on cases from a third
dataset [23].

3.1 Mathematical model of
heterogeneity in clonal evolution

We developed a stochastic model of evolution of leukemic
clones and the nonneoplastic hematopoietic clones.
Parameters were estimated by fitting the expected value
model to the patient’s clinical data (Methods). Because
the fits are not unique, three sets of estimated parameters
for stochastic simulations were acquired from the list of
expected value fits, with low, average, and high renewal
rates (Parameter Sets 1, 2, and 3, respectively). Supporting
Information Methods, Tables S1 and S2, and section
Inputs of the model: Clinical data and clonal landscapes at
diagnosis and relapse, contain further information.
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3.2 Estimation of coefficients

For each patient in the training set, 100 parameter sets
were found using parameter fitting as presented in Fig-
ure 1C. There were several observations. For the clones at
relapse (Figure S1), the parameter pairs (𝑎l, 𝑝l), probability
of self-renewal (as opposed to maturation), and the prolif-
eration rate formed curves in the parameter space, as in
[28]. A given clone curve was above others if the clone was
more competitive (higher renewal probabilities or higher
proliferation rates; see Patients 400220, 573988, 758168, and
804168 in Figure 1C).
For the clones that, in the model, became extinct at

relapse, there was no pattern to the pairs (𝑎l, 𝑝l) (Patients
426980 and 452198 in Figure 1C). The pairs well below the
curves corresponded to Scenario 1, inwhich the clones died
because they could not compete against the other leukemic
clones or the normal clone. The pairs either above the
curves or slightly below belonged to Scenario 2, in which
the competitive clones died during chemotherapy because
of high proliferation rates.
Figure 2 shows single expected trajectory for Patient

3 corresponding to a particular parameter set. For the
same patient, different parameter sets resulted in differ-
ent trajectories, however, with the same clonal percent-
ages at diagnosis and relapse. Under this parameter set,
the model predicted that leukemic Clone 1 was eliminated
during treatment, Clone 2 escaped treatment but grew very
slowly and was undetectable at relapse, Clone 3 escaped
treatment but subsequently became outcompeted by other
clones, and Clone 4 grew steadily from a low level after
remission and was the only leukemic clone detected at
relapse. Figure S2A–E displays the expected trajectories for
other cases in the training set.
We performed an identical analysis for patients in the

validation set. The results of parameter estimation based
on validation cases are in agreement with those based on
the training set (Figure S4A).

3.3 Stochastic simulations

For each patient in the training set, three parameter sets
are chosen to represent the range of outcomes under differ-
ent assumptions of mitotic cell behavior. Figure 3A shows
the expected value and stochastic outcomes for Patient 5.
Under Parameter Set 1, leukemic clones had high prolifer-
ation rates and low renewal rates and were highly affected
by chemotherapy as mitotic cell death was assumed pro-
portional to proliferation rate. In the expected valuemodel,
the disease persistedwith a very small population at remis-
sion, which eventually gave rise to relapse. Because the
simulated leukemic population was small at remission,

random fluctuations led to eradication of one or more
leukemic clones after treatment. For Parameter Set 3, with
low proliferation rates and high renewal rates, chemother-
apy had a smaller impact on the leukemic populations.
The disease was more frequent at remission and increased
in size until relapse. Parameter Set 2 presented a middle
ground between Parameter Sets 1 and 3; the disease was
almost eradicated by chemotherapy, as in Parameter Set 1,
but remission contained a larger leukemic population and
therefore 64.1% of stochastic simulations led to the same
outcome as the expected value simulation.
Figure 3B shows the expected and stochastic outcomes

for Patient 2. The expectations showed that only Clones
2 and 5 were present at relapse, and 42.4%, 92.3%, and
0% of the stochastic simulations under Parameter Sets 1,
2, and 3 led to this outcome, respectively. Under Param-
eter Set 1, all other leukemic clones were eradicated by
chemotherapy. However, random fluctuations also might
lead to either Clone 2 or 5 being eliminated even after treat-
ment. The stochastic simulations under Parameter Set 3
followed a different route. No leukemic clone was entirely
eradicated by the time of complete remission, but Clones 1
and 4 were gradually outcompeted. Furthermore, Clone 3
was present at relapse in all stochastic simulations, but at
population sizes smaller than the detection level. Similarly
as for Parameter Set 1, Clones 2 and 5 could each be erased
due to stochastic fluctuations. Figure S3A–D displays the
stochastic outcomes for the remaining four cases in our
training set.
Stochastic results for the validation set are shown in

Figure S4B–H. Similarly to the training set, different
parameter sets for the same patients may lead to signif-
icant changes in the potential paths to relapse and their
probabilities. For instance, under clonal tree 2 of Patient 2
(Figure S4C), Parameter Set 1 resulted in a wide range of
possible relapse outcomes, themost probable of whichwas
only of frequency 16.9%. However, under Parameter Set 3
in the same patient, all stochastic simulations led to the
same clonal composition observed in the patient’s data.
Overall, our model showed that stochastic fluctuations
played an important role in deciding which leukemic
clones survived chemotherapy and progressed to relapse.

3.4 Comparison to independent
estimates of MRD, clonal growth rates, and
WBC

Ivey et al. [5] studied the dynamics of mutant levels in
BM and peripheral blood at several time points following
remission to detect MRD as early as possible. All patients
had leukemic cells harboring mutated NPM1, one of the
most commonly affected genes in AML [29]. Under the
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F IGURE 2 Results of the fitting procedure for Patient 3 (ID: 452198). Example of fitting the expected trajectories using a single
parameter set (time in logarithmic scale). (A) Evolution of mitotic populations in the bone marrow of all clones, with cell counts in
logarithmic scale. (B) Evolution of the mature populations in peripheral blood. Green bars indicate chemotherapy. (C) Evolution of bone
marrow cellularity. (D) Evolution of clonal percentages in bone marrow. The bar chart on the left depicts clone percentages at diagnosis, and
the one on the right depicts clone percentages at relapse (both based on sequencing data). The parameter sets are chosen to fit the clonality
data in these two bar charts, as shown in the middle chart. Color codes for clones in (B) and (D) are the same as in (A), as described in the
inset. (E) Evolution of clonal percentages in peripheral blood

assumption that the regrowth of the malignant clone was
exponential, the resulting growth rates varied from 0.3 to
2.0 log10 per month, as reproduced in Figure 4A. We com-
pared the growth rates of the clones in the TCGA AML
patients to verify if they fitted into this range (assuming
clones with different mutations had similar growth rates

to the NPM1-mutant clones). Only the clones still present
in the patients’ clinical data at relapse were considered.
Their growth rates were estimated based on the param-
eters resulting from model fitting (see Supporting Infor-
mation Methods section Minimal residual disease). When
compared to [5], the growth rates for all patients in our
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F IGURE 3 (A) Results of stochastic modeling of Patient 5 (ID: 758168). Columns correspond to different parameter sets. Row 1: Evolution
of clonal percentages in the expected value model. Rows 2 and on: Outcomes of the stochastic model, with cell counts in logarithmic scale,
with corresponding frequencies of occurrence listed. Stochastic simulations agree with the expected value results in Parameter Set 3. In
Parameter Set 1, no simulation leads to the same outcome as the expected value simulation, where all three leukemic clones detected at
diagnosis are present at relapse. Agreement of stochastic and expected value outcomes is 64.1% in Parameter Set 2 and 100% in Parameter Set
3. (B) Results of the stochastic model for Patient 2 (ID: 426980). Columns correspond to parameter sets. Row 1: Evolution of clonal percentages
in the expected value model. Rows 2 and on: Outcomes of the stochastic model, in logarithmic scale with frequencies of occurrence listed
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F IGURE 4 (A) Kinetics of relapse of NPM1-mutated AML (reproduced from [5] with permission). Based on sequential monitoring of
samples obtained in human patients after the end of chemotherapy until molecular or hematological relapse. BM, bone marrow; PB,
peripheral blood. (B) Inferred growth rates of different clones in training and validation patients. Only the clones that still exist at relapse in
the patients’ data were considered. The red lines are bounds for growth rates from 0.3 to 2.0 log10 per month, based on the range of growth
rates of NPM1 mutant clones in [5] (see Fig. 7). Growth rates computed from our model (circles) fit into this range. (C) Nadir values of the
WBC count during chemotherapy. The WBC nadirs for patients in the training and validation dataset were computed using the expected
value fits. WBC computations assumed that an average patient has 5 L of blood. Blue dots: training dataset. Purple dots: validation dataset.
Red lines: range of observed WBC nadirs of 14 patients in [22]

analysis fit in the range of experimentally observed data
(Figure 4B).

3.5 Predicting relapse fromMRD

Wenext examined themodel’s ability to predict the chance
of relapse, TTR, and the clonal landscape at relapse. We
employed the data of four patients in [23], which contained
clonal cell counts at diagnosis, remission, and relapse from
single-cell DNA sequencing. Relapse occurred in all four
cases.
The data at diagnosis and remission were used to fit

the model, then the resulting stochastic trajectories were

extrapolated to predict relapse. Figure 5A showed the
expected value and stochastic outcomes for Patient SU067.
The model accurately predicted that relapse would occur.
Moreover, it also predicted that relapse would be caused
by the NPM1/WT1 clone alone, in agreement with patient
data. The three parameter sets differed slightly in the rate
to relapse. Parameter Set 3 (low proliferation rate and high
renewal rate) appeared closest in blast percentage to the
clinical data.
Figure 5B shows the results for Patient SU291. The

model predicted that relapse would not occur, contrary
to the clinical data. This was because sequencing at two
remissions (days 26 and 359) detected no blasts in BM,
although the clonal landscape at relapse consisted of both
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F IGURE 5 (A) Results of stochastic modeling of Patient SU067. Columns correspond to different parameter sets. Row 1: Evolution of
clonal percentages in the expected value model. The model is fitted to the clonal data at diagnosis (left bar) and at remission (MRD; end of
treatment). The predictions for the clonal composition at relapse are then compared against actual measurements (right bar). Rows 2 and on:
Outcomes of the stochastic model, with cell counts in logarithmic scale, with corresponding frequencies of occurrence listed. Stochastic
simulations can predict relapse from MRD data. (B) Results of stochastic modeling of Patient SU291. Stochastic simulations predict that
relapse will not occur, contrary to real data. This is because the single-cell sequencing at remission did not detect MRD

clones detected at diagnosis (NPM1 and NPM1/IDH2) and
a new clone (NPM1/IDH1/FLT3D835Y). This suggests that
there was MRD after treatment, undetected by single-cell
sequencing of around 1000 cells.
The results for Patients 320 and 372 are shown in Fig-

ure S5. The model predicted relapse in Parameter Set 1 for
Patient 372, in agreement with clinical data. It also pre-
dicted the correct clone to drive relapse, and the blast per-
centage at relapse was close to the clinical observations.
Parameter Sets 2 and 3 predicted relapse, which implies
that the leukemic clones in this case were on the aggres-
sive side of the parameter spectrum. For Patient 320, the
model predicted relapse in all parameter sets. However, it
predicted the wrong clone to relapse. All clones detected at
relapse in this patient were already found at diagnosis but
not at remission, once again suggesting that the MRD was
below the sensitivity level of single-cell sequencing.

3.6 Relationship betweenMRD and
TTR

We next studied the connection between MRD (the
leukemic clonal percentage in BM at 4months after remis-
sion) and TTR (the period from remission to the time blasts
exceed 5% of BM) inferred from the stochastic model as
explained earlier on. A sigmoidal Hill function [30] was
fitted to the predictions. Since patient 5 (ID: 758168) was
the only patient with a cytogenetic abnormality, another
sigmoidal Hill function was fitted excluding this patient
to study sensitivity of the relationship between MRD and
TTR to the change (Figure 6A). Data from our valida-
tion study were superimposed for comparison (Figure 6B).
We observed that including or excluding patient 5 did
not significantly change the sigmoidal Hill fit. Finally, we
included the data of eight relapsed AML cases from [23],
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F IGURE 6 (A) Relationship between MRD and TTR (time to relapse) for all patients. Estimates of MRD in BM and TTR are mean
values from 1000 stochastic simulations (Top and Middle) or are clinically measured (Bottom). Colors identify patients; left triangles
correspond to Parameter Set 1, circles, squares, diamonds or stars correspond to Parameter Set 1, and right triangles correspond to Parameter
Set 3. Top: A sigmoidal Hill function of the form TTR = A/(B + (log (MRD) − C)n) is fitted to the training dataset [21], with (red line) or
without (black line) patient 5 (ID: 758168). Middle: MRD and TTR estimates from [22] agree with this MRD–TTR relationship, even though
these data points were not fitted. Bottom: Clinical measurements of MRD in BM or PB, and observations of TTR from [23] are compared
against the sigmoidal Hill function. The data points with MRD in BM largely agree with the predictions, whereas the data points with MRD in
PB do not. Parameters for the Hill fit with patient 5: A = 14036.3, B = 22.2, C = −7, n = 2.38. Parameters for the Hill fit without patient 5:
A = 2836.6, B = 3.7, C = −7, n = 1.49. (B and C) Analysis of MRD for Patient 3 (ID: 452198). (B) Evolution of %BM blast (red) and %PB blast
(blue) from diagnosis to relapse. Solid lines: mean values; broken lines: minimum/maximum values. The mean %BM blast and the mean %PB
blast are largely close from complete remission to relapse. The minimum %BM blast and %PB blast indicate that some simulations lead to the
disease being eradicated. (C) Frequency graph of %BM blast when %PB blast reaches 5%

where the MRD was clinically examined in either BM
(three cases) or PB (five cases).
MRD at 4 months was typically smallest in Parameter

Set 1 and largest in Parameter Set 3. This was in agreement
with our previous observation from the stochastic model;
Parameter Set 1 showed that leukemic clones were affected
the most by chemotherapy and therefore the disease level
at remission was very small (some clonal populations
decreased to ∼101–102 cells; see Figures 1–3). Comparing
all patients, it is clear that larger MRD is associated with
shorter TTR and smaller MRD is associated with higher
variance in relapse time.
Even though the sigmoidal Hill functions were only fit-

ted to data from the six cases in ourmodel training set, they
accurately predicted the TTR for the five patients in the val-
idation study. The fit was somewhat better if the Hill func-
tion fitted without Patient 5 in the training set was used. A
possible reasonwas that no patients in the validation study
had any cytogenetic abnormality. Comparing the results
from two different clonal trees for Patients 2 and 3 revealed

slight changes in MRD level and virtually no difference in
TTR.
The data from [23] included the clinically observedMRD

and TTR. The data appeared to agree with the sigmoidal
Hill functions if theMRD came fromBM,whereas the data
with MRD from PB did not. One possible reason was that
our model was trained for MRD in BM. On the other hand,
there was no obvious pattern to the MRD–TTR in PB, sug-
gesting that MRD in PB is a poor predictor of TTR.
We also carried out a comparative analysis of MRD in

BM and peripheral blood, which led to results consistent
with the usual definition of the TTR (Supporting Infor-
mation Methods section Comparison to independent esti-
mates of the MRD, clonal growth rates, and WBC; also see
Figure 6C). In addition, we also examined data from the
two patients from [21] who underwent autologous BM
transplant. Autologous transplant patients section and Fig-
ure S6 in Supporting Information Methods online contain
methodology details. These patients’ simulated MRD and
observed TTR fit the Hill function relationship too.
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See Conclusions from the statistical analysis in the Sup-
porting Information Methods for calculations supporting
validity of the Hill function approximation.

4 DISCUSSION

Identification of MRD as an independent prognostic fac-
tor, stratification of patients by their status, and early inter-
vention with change in therapy improved outcomes in
acute lymphoblastic leukemia [6, 22, 31–35]. A challenge
remains how to defineMRD in AML and use that informa-
tion to intervene and improve outcome [7]. The threshold
of what constitutes MRD in AML is not well established
for cytogenetics, or leukemia-associated immunopheno-
type, or mutational allelic frequency [34]. Half of AML
patients with MRD absent relapse [2]. Each of these assays
has a different level of sensitivity. Currently accepted
definition of MRD at 0.01% is based on flow cytometry
leukemia-associated immunophenotypes. Different sub-
types of AML, for example, NPM1 or FLT3mutations, may
have different MRD dynamics. Relapse can be associated
with loss of founder mutations [36]. Flow cytometry false-
negative results occur at almost 19% [6]. Nonetheless, a
growing number of clinical trials document the prognos-
tic value of MRD in AML [34].
To estimate our model parameters, we included treat-

ment protocol, blood counts, and BM biopsy results from
which the clonal landscapes at diagnosis and relapse
were determined. The model was calibrated to fit the
clonal frequencies, while satisfying the biological require-
ments as observed in the data. We first fitted the model
based on a training set of six cases from Ding et al. [21]
and then validated the finding using an independent
set of five cases from Shlush et al. [22]. Three findings
emerge:

1. Depending on the number of malignant cell clones and
other parameters, all estimated based on clinical and
genomic data, the evolution of disease and the outcome
of treatment were subject to stochastic fluctuations that
might radically alter the course of disease.

2. The estimates ofmalignant clone growth rates, obtained
by fitting model to data, were consistent with those by
Ivey et al. [5] based on a study of dependence of MRD
and TTR.

3. Using estimates from the training set, we developed a
function linkingMRD and TTRwithMRD unobserved,
but inferred from the model fits to the data. The rela-
tionship was consistent with MRD estimates based on
the validation set. Further, this characteristic predicted
the TTR given MRD in patients from a third dataset
[23].

An important issue is whether the clone growth rates
estimated using the model are systematically different for
patients with different AML subtypes. In our data, the sin-
gle APML Patient 758168 had the longest TTR. However,
as depicted in Figure 4, most rates identified in patients
in the training and validation study fall within the NPM1
range from [5]. Mutations in genes such as FLT3-ITD and
DNMT3A, are associated in the literature with increased
risk of relapse. However, in the pooled dataset of 15 cases,
the average times to relapse of cases with and without
the high-risk mutations FLT3-ITD or DNMT3A equaled
274 and 247 days (medians 278 and 176 days, respectively).
The difference in means is not significant and the trend in
medians is opposite to that expected by the differential-risk
hypothesis.
At least one publication described clonal heterogeneity

by modifying the ODE model to accommodate new
leukemic clones arising from mutations [35]. We did
not include mutations in our model because relapse
more likely results from MRD than new clones during
chemotherapy [22, 37]. The ODE models were used to
track the evolution of different leukemic clones from
diagnosis to TTR [14, 28, 35]. This is appropriate when
populations approach equilibrium. However, during and
after chemotherapy, leukemic populations experience
bottlenecks and fluctuate stochastically. One conclusion
from our analysis is that it is necessary to distinguish
between the division rate and self-renewal fraction.
Various combinations of these two parameters lead to the
same growth rates but different treatment effects. This was
noticed before [38], but does not seem to be universally
appreciated.
When chance events such as extinction or “crowding

out” of small clones have a sufficiently high probability or,
in our model, when the leukemic cell population is small,
stochastic effects may lead to “coin flip” outcomes, as
demonstrated by our simulations. Accordingly, the model
demonstrates that the effects of treatment are affected by
random events such as extinction versus persistence and
subsequent expansion of small clone present at remission.
This leads to uncertainty and inevitable prediction errors.
Mathematical control theory [39] argues that processes
such as this can be controlled in a way that increases the
chance of eventual success. What is needed is a periodic
evaluation of the MRD, with period adjusted to the esti-
mated growth rates of the clones.
Identification of MRD as early as possible and chang-

ing the treatment planwill enhance long-termdisease con-
trol and curability. One challenge is the identification of
high-value target in relapsing clones and effective phar-
macologic targeting. Studying the success of MRD in ALL
instructs us that time points and thresholds can be identi-
fied with well-controlled clinical trials.
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Longitudinalmonitoring of variant allele frequency cou-
pledwithmultitype branching process simulation provides
a precision medicine approach to improve clinical man-
agement of patients with AML. Tracking an individual’s
leukemic clones and predicting when relapse might occur
may prompt the oncologist to change therapies, prepare for
a stem cell transplant should there be acceptable comor-
bidities, provide chemotherapy as a bridge to transplant,
and proceed to transplant.
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Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

How to cite this article: K. N. Dinh, R. Jaksik, S.
J. Corey, M. Kimmel, Predicting time to relapse in
acute myeloid leukemia through stochastic modeling
of minimal residual disease based on clonality data,
Comp. Sys. Onco. 1 (2021), e1026.
https://doi.org/10.1002/cso2.1026

 26899655, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cso2.1026 by T

est, W
iley O

nline L
ibrary on [01/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/cso2.1026

	Predicting time to relapse in acute myeloid leukemia through stochastic modeling of minimal residual disease based on clonality data
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Patient data and informed consent
	2.2 | Mathematical model
	2.3 | Stochastic model for proliferation and competition of normal and leukemic cells
	2.4 | Hill function depicting dependence of TTR on MRD
	2.5 | Code availability

	3 | RESULTS
	3.1 | Mathematical model of heterogeneity in clonal evolution
	3.2 | Estimation of coefficients
	3.3 | Stochastic simulations
	3.4 | Comparison to independent estimates of MRD, clonal growth rates, and WBC
	3.5 | Predicting relapse from MRD
	3.6 | Relationship between MRD and TTR

	4 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


