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Abstract
Approximate Bayesian Computation (ABC) is a popular inference method when likelihoods are hard to come by. Practical
bottlenecks of ABC applications include selecting statistics that summarize the data without losing too much information or
introducing uncertainty, and choosing distance functions and tolerance thresholds that balance accuracy and computational
efficiency. Recent studies have shown that ABC methods using random forest (RF) methodology perform well while cir-
cumventing many of ABC’s drawbacks. However, RF construction is computationally expensive for large numbers of trees
and model simulations, and there can be high uncertainty in the posterior if the prior distribution is uninformative. Here we
further adapt random forests to the ABC setting in two ways. The first exploits distributional random forests to provide a direct
method for inferring the joint posterior distribution of parameters of interest, while the second describes a sequential Monte
Carlo approach which updates the prior distribution iteratively to focus on the most likely regions in the parameter space.
We show that the new methods can accurately infer posterior distributions for a wide range of deterministic and stochastic
models in different scientific areas.

Keywords Parameter estimation · Branching processes · Systems biology
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1 Introduction

Mathematical modeling has played an important role in
studying scientific phenomena. Its practical applications
often depend on accurately extracting model parameters θ

from experimentally observed data, yobs. In the Bayesian
framework, this entails inferring the posterior distribution

π(θ | yobs) ∝ f (yobs | θ) · π(θ)

of the parameters from the data, exploiting the likelihood
f (yobs | θ) and the prior π(θ) of such observations under the
model with given parameter values. However, the likelihood
function is often intractable to derive theoretically, difficult
to compute numerically, or too complex to optimize directly.
Approximate Bayesian Computation (ABC) was proposed
as an alternative method to approximate the posterior distri-
butions in such scenarios (Tavaré et al. 1997; Fu and Li 1997;
Pritchard et al. 1999; Beaumont et al. 2002). Using statistics
to summarize model simulations, ABC seeks the parame-
ters that result in minimal distance between the statistics and
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those of the observed data. Different variations have been
proposed to improve the performance of the original ABC
method, such as ABC Monte Carlo Markov Chain (Marjo-
ram et al. 2003) andABCSequentialMonte Carlo (Toni et al.
2008), and they have collectively found remarkable success
in applications across different scientific areas (Sisson and
Fan 2018).

The accuracy and efficiency of ABC in practice depends
on several factors. First, one requires a distance function to
compare observed and simulated data. The metric is typi-
cally weighted so that different statistics contribute equally
(Prangle 2017). However, an equally important consideration
is the relevance of each statistic, defined as the amount of
information that it carries toward identifying the underlying
parameters. Optimizing these two criteria can be challeng-
ing (Jung and Marjoram 2011). Second, ABC requires a
tolerance threshold to decide whether proposed parameters
are accepted or rejected. The tolerance ε poses a trade-off
between the computational efficiency, which increases with
higher ε, and accuracy of the empirical posterior distribu-
tions, which improves as ε decreases. Choosing ε depends
on the specific model, statistic choices and distance func-
tion, and it may require intuition or experimentation (Jung
and Marjoram 2011). Finally, and most importantly, ABC’s
results depend on the choice of summary statistics. The
approximated posterior distribution is only guaranteed to
converge to the likelihood-based distribution as ε → 0 if
the statistics are sufficient. For complex models, it is not
always possible or realistic to find low-dimensional sufficient
statistics (Sisson and Fan 2018, Chapter 5). This can some-
times be remedied by inclusion of many distinct statistics.
However, the posterior estimation may become distorted if
the selected statistics are noisy or uninformative. These fac-
tors in combination mean that optimizing the performance
of ABC in practice can be challenging and require extensive
experimentation.

Recent studies have shown that random forests (RF), a
powerful non-parametric regressionmethod (Breiman2001),
can be employed in the ABC context to infer posterior dis-
tributions (Raynal et al. 2019). Its appeal lies in reduced
dependence on user-defined hyperparameters that are essen-
tial to traditional ABC implementations, including themetric
function and tolerance threshold. Moreover, RF has been
shown to perform well even if the majority of statistics are
pure noise, indicating that it is significantly more tolerant to
a wider selection of statistics to represent the data (Raynal
et al. 2019).

Therefore, RF methods have the potential to approximate
the posterior distributions well with lower computational
cost. However, the inclusion of all simulations in inferring
parameters, coupledwithwide range in the prior distributions
for some models, can sometimes result in higher uncertainty
in the posterior distributions.

In this paper,wepropose anew inferencemethod,Approx-
imate Bayesian Computation sequential Monte Carlo with
random forests (ABC-SMC-(D)RF). It inherits the non-
parametric nature of RF methods, but is embedded in the
framework of Sequential Monte Carlo (Toni et al. 2008).
The posterior distribution evolves with successive iterations
to focus on the most likely regions in the parameter space,
resulting in more relevant model simulations and lower
uncertainty in the final distributions.

We use some traditional ABC methods in comparisons
with ABC-SMC-(D)RF described in the following sections.
Recent ABC implementations using random forests are
reviewed in Section 2, with illustrative examples in Section
3. In Section 4, we describe ABC-SMC-(D)RF’s methodol-
ogy.We then demonstrate its performance, compared both to
traditional ABC algorithms and previous RF-based methods,
in a variety of deterministic and stochastic models (Section
5). We conclude with a discussion.

2 Random forests in the context of ABC

Although simple to implement, the ABC methods depend
heavily on the choices of hyperparameters, including the
summary statistic function S(y), the distance function
d(s, s′) and the tolerance threshold ε (Sisson and Fan 2018).
Furthermore, the choices of Markov kernels to propose new
particles inABCMonteCarloMarkovChain (ABC-MCMC)
and ABC Sequential Monte Carlo (ABC-SMC) also affect
the approximated posterior distributions. As random forests
(RF) gain in popularity as a powerful non-parametric regres-
sion technique (Breiman 2001; Segal 2004; Rigatti 2017;
Desai and Ouarda 2021), its applications in the context of
ABC are also becoming more prominent. RF-based methods
eliminate the need for choice of metric, tolerance level and
the perturbation kernels, making them an attractive alterna-
tive to the previous ABC implementations. Importantly, the
RF method is relatively robust to noise (Marin et al. 2018),
in that S(y) can include many poorly informative statistics
without significant impact on the results.

2.1 One-dimensional ABC random forests

Raynal et al. introduced ABC random forest (ABC-RF) to
approximate the posterior distribution for ABC inference
problems with one parameter (Raynal et al. 2019), based
on the random forest formulation (Algorithm 1) developed
by Breiman (2001). The root node for each tree Tt is the ref-
erence table, consisting of parameters drawn from the prior
distribution and corresponding statistics. Each node R∗ in the
decision tree is split into two nodes R∗1 and R∗2 by selecting
one statistic k∗ ∈ {1, . . . , |S|}, where |S| is the total number
of summary statistics, and a threshold s∗ such that the L2-loss
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between the divided sets

1

|R∗|

⎛
⎝ ∑

(θ,s)∈R∗1

(
θ − θ̄1

)2 +
∑

(θ,s)∈R∗2

(
θ − θ̄2

)2
⎞
⎠ (1)

is minimized. Here |R∗| is the number of particles in R∗, and
θ̄1, θ̄2 are the parameter means in R∗1 and R∗2 respectively.
The tree is finished when each leaf either consists of less
than Nmin particles, or all of the leaf’s particles have the
same statistics. To guarantee forest diversity, the root node
of each tree (Step 5 in Algorithm 1) is bootstrapped from
the reference table, and the statistics considered for splitting
each node (Step 9 in Algorithm 1) is limited to a randomly
selected subset of size ntry among the available statistics S.

Algorithm 1: Growing regression trees for ABC-RF
(Raynal et al. 2019)

1 Sample θ(1), . . . , θ (N ) ∼ π(θ)

2 Simulate y(1), . . . , y(N ) and compute s(1), . . . , s(N )

3 Form reference table R = {(
θ(1), s(1)

)
, . . . ,

(
θ(N ), s(N )

)}
4 for t = 1, . . . , B do
5 R0 ← bootstrapped from R
6 Tree Tt is rooted in node R0
7 while maxleafR∗∈Tt |R∗| > Nmin do
8 Find a leaf R∗ in Tt with |R∗| > Nmin
9 Statistic candidates for splitting R∗ ← sample of size ntry

among S
10 Choose statistic k∗ among the candidates and threshold

s∗ ∈ R to split node R∗ into new leaves
R∗1 = {

(θ, s) ∈ R∗ : sk∗ ≤ s∗
}
and

R∗2 = {
(θ, s) ∈ R∗ : sk∗ > s∗

}
, such that the L2-loss

criterion (Eq. (1)) is minimized

Given an observation yobs, predicting its parameter θ

based on tree Tt involves following from the root node with
the statistics sobs and comparing sobsk∗ with s∗ at each node

R∗ to select the next node, until reaching a leaf Lt (sobs). The
prediction for θ based on Tt is then the average parameter
among particles in Lt (sobs):

∑N
i=1 θ(i) · n(i)

t · 1s(i)∈Lt (sobs)∑N
i=1 n

(i)
t · 1s(i)∈Lt (sobs)

where n(i)
t is the number of times θ(i) is duplicated in the

bootstrapped sample R0, and 1s(i)∈Lt (sobs) is the indicator for
whether s(i) falls into the same leaf as sobs. The prediction
for θ based on the whole forest is the average of predictions
based on each tree:

N∑
i=1

θ(i) · 1

B

B∑
t=1

n(i)
t · 1s(i)∈Lt (sobs)∑N

i=1 n
(i)
t · 1s(i)∈Lt (sobs)

Raynal et al. (2019) argued that this weighted estimate
implies that the density of particles θ(i) with correspond-
ing weights w(i) (Algorithm 2) forms the approximation
πABC−RF (θ |sobs) for the posterior distribution.

Algorithm2:Posterior distribution fromABC-RF (Ray-
nal et al. 2019)
1 for t = 1, . . . , B do
2 Follow the tree Tt from root node with sobs until locating leaf

Lt (sobs)

3 for i = 1, . . . , N do
4 Weight for particle

θ(i) ← w(i) = 1
B

∑B
t=1

n(i)
t ·1s(i)∈Lt (sobs)∑N

i=1 n
(i)
t ·1s(i)∈Lt (sobs)

Marin et al. (2022) developed an R package abcrf based
on the ABC-RF method. For multivariate problems, ABC-
RF is usually applied for each parameter marginally (Raynal
et al. 2019). The authors also provided suggested values for
RF hyperparameters; by default, Nmin = 5 and ntry = |S|/3.
Among the most important hyperparameters is the count of
trees B, for which they recommend analyzing whether the
out-of-bag mean squared error stabilizes around the selected
B (Raynal et al. 2019; Pudlo et al. 2016).

2.2 Distributional random forests

Ćevid et al. (2022) developed distributional random forests
(DRF) for multivariate regression problems. The approach
considers two criteria to split tree nodes. The first criterion
extends the L2-loss formula (Eq. 1),which the authors rewrite
as

1

|R∗|
∑

(θ,s)∈R∗

(
θ − θ̄

)2 − |R∗1| · |R∗2|
|R∗|2

(
θ̄2 − θ̄1

)2

where θ̄ is the parametermean in the parent node R∗. Because
the first term does not depend on the split, minimizing the
L2-loss is equivalent to maximizing

|R∗1| · |R∗2|
|R∗|2

(
θ̄2 − θ̄1

)2
(2)

Choosing (k∗, s∗) for multivariate problems then involves
maximizing Eq. 2, aggregated across different parameters.
Because this condition, denoted as the CART criterion, only
considers the difference in mean parameters in the child
nodes and not the whole distributions, Ćevid et al. developed
a second criterion based on the maximal mean discrepancy
(MMD)metric (Ćevid et al. 2022). TheMMDdefines the dif-
ference between distributions of particles in two different sets
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by employing a positive-definite kernel and its embedding
into a Reproducing Kernel Hilbert Space (RKHS) (Gretton
et al. 2007). Due to the computational expense of MMD
and the need to compute it for many different statistic and
threshold candidates, the authors replace the kernel with its
Fourier approximation. By default, they use the Gaussian
kernel k(θ, θ ′) = exp(−‖θ − θ ′‖22/2σ 2)/(σ

√
2π)|�| with

parameter count |�| and bandwidth σ , the median pair-
wise L2 distance between the parameters of the particles
in the parent node. With Fourier features ω1, . . . , ωL ran-
domly chosen from the multivariate Gaussian distribution
Normal|�|

(
0, σ−2I|�|

)
where 0 and I|�| are square zero and

identity matrices of size |�| × |�|, Ćevid et al. derive the
approximate MMD as

D(R∗1, R∗2) = 1

L

L∑
l=1

|R∗1| · |R∗2|
|R∗|2 ×

∣∣∣∣∣∣
1

|R∗1|
∑

θ∈R∗1
ϕωl (θ) − 1

|R∗2|
∑

θ∈R∗2
ϕωl (θ)

∣∣∣∣∣∣

2

(3)

where ϕω(u) = eiω
T u are the approximate kernels. Con-

structing the random forest using the MMD criterion (Algo-
rithm 3) consists of splitting each node, such that (3) is
maximized.

Algorithm 3: Growing regression trees for DRF (Ćevid
et al. 2022)

1 Form reference table R = {(
θ(1), s(1)

)
, . . . ,

(
θ(N ), s(N )

)}
,

similar to Algorithm 1
2 for t = 1, . . . , B do
3 Rt ← subsample of R of size nsample; Rt is split into Rt1 and

Rt2
4 Tree Tt is rooted in node Rt1
5 while maxleafR∗∈Tt |R∗| > Nmin do
6 Find a leaf R∗ in Tt with |R∗| > Nmin
7 Statistic candidates ← subsample of S with size

min(max(ñtry, 1), |S|), where ñtry ∼ Poisson(ntry)
8 if criterion = CART then
9 Choose statistic k∗ and threshold s∗ to split node R∗

into new leaves R∗1 = {
(θ, s) ∈ R∗ : sk∗ ≤ s∗

}
and

R∗2 = {
(θ, s) ∈ R∗ : sk∗ > s∗

}
, such that the CART

criterion (Eq. 2), aggregated across all parameters, is
maximized

10 else if criterion = MMD then
11 σ ← median pairwise distance between θ’s in R∗
12 Fourier features ω1, . . . , ωL ∼ Normal|S|

(
0, σ−2I|S|

)
13 Choose k∗ and s∗ to split R∗ into R∗1 and R∗2, such

that the MMD criterion (Eq. (3)), defined with ωl ’s, is
maximized

14 for i = 1, . . . , |Rt2| do
15 Follow Tt from root node with s(i) to locate leaf Lt

(
s(i)

)

Once the random forest is constructed, computing the pos-
terior distribution for an observation yobs consists of finding
the leaf Lt

(
sobs

)
in each tree Tt that the observed statistics

sobs falls into. Because the samples for tree construction are
not bootstrappped, the weight for each particle θ(i) in the ref-
erence table is simply the normalized number of times that
it ends up in the same leaf as sobs across the entire forest
(Algorithm 4).

The CDF of the joint posterior distribution πABC−DRF

(θ |sobs) is then approximated as

P
(
θ1 ≤ x1, . . . , θ|�| ≤ x|�|

) =
N∑
i=1

w(i)1
θ

(i)
1 ≤x1,...,θ

(i)
|�|≤x|�|

Algorithm 4: Multivariate distribution from DRF
(Ćevid et al. 2022)
1 for t = 1, . . . , B do
2 Follow the tree Tt from root node with sobs until locating leaf

Lt (sobs)

3 for i = 1, . . . , N do

4 Weight for particle θ(i) ← w(i) = 1
B

∑B
t=1

1Lt (si )=Lt (sobs)

|Lt (sobs)|

Ćevid et al. (2022) developed an R package drf based on
Algorithms3 and4.Compared toabcrf, the authors employ
differentmethods tomaximize forest diversity (Algorithm3).
Instead of a fixed number of ntry randomly selected statistics
from which the splitting condition is chosen, the number
of candidate statistics in DRF varies between nodes, fol-
lowing min(max(ñtry, 1), |S|) where ñtry is sampled from
Poisson(ntry). Furthermore, instead of bootstrapping the ref-
erence table, the samples Rt1 to form each tree’s root node
are subsampled from R. After the tree is constructed, the
particles actually stored in the leaves for computing poste-
rior weights are from a disjoint subsample Rt2 of R, in order
to minimize overfitting. By default, the total number of par-
ticles used for tree construction Rt1 and weights Rt2 is N/2.

In the next section we describe how DRF may be adapted
for use in approximate Bayesian computation.

3 ABC-DRF

The main limitation of abcrf is that it is typically used for
inference of one parameter at a time, resulting in difficulty
studying the joint posterior of the elements of θ . We noted
in Dinh et al. (2024) that DRF may be exploited for use in
ABC by constructing the reference table just as for ABC-
RF, and then using drf to generate observations from the
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joint posterior.We give an illustration of this approach, called
ABC-DRF, in this section.

3.1 A hierachical normal mean example

We illustrate ABC-DRF with an adaptation of an example
fromRaynal et al. (2019) and discussed in Dinh et al. (2024).
The model has

y1, y2, . . . , yn | θ1, θ2 ∼ Normal(θ1, θ2)

θ1 | θ2 ∼ Normal(0, θ2)

θ2 ∼ IG(α, β) (4)

where IG(α, β) denotes the inverse gamma distribution with
shape α and rate β and density

f (x;α, β) = βα

�(α)
(1/x)α+1 exp(−β/x), x > 0.

Theobserveddata yobs consists ofn data points yobs1 , . . . , yobsn .
The joint posterior distribution of (θ1, θ2) is determined

by

θ2 | yobs ∼ IG
(n
2

+ α, B
)

(5)

θ1 | θ2, y
obs ∼ Normal

(
n · ȳobs
n + 1

,
2 · θ2

n + 1

)
, (6)

where

B = 1

2

(
(Sobs)2 + 2β + n · (ȳobs)2

n + 1

)
,

ȳobs = n−1
n∑

i=1

yobsi , Sobs =
√√√√

n∑
i=1

(
yobsi − ȳobs

)2
.

The marginal posterior of θ1 is

θ1 | yobs ∼ n · ȳobs
n + 1

+
√

2B

(n + 1)(n + 2α)
· Tn+2α

where Tm denotes the t-distribution with m degrees of free-
dom. θ1 and θ2 are uncorrelated under the posterior.

To illustrate the behavior ofABC-DRF,wegenerated a test
set yobs = (yobs1 , . . . , yobs10 ) from the model, and let sobs =
S(yobs) consist of the 61 summary statistics described in
Raynal et al. (2019). The first three statistics sobs1 , sobs2 , sobs3
are themean, variance andmedian absolute deviation of yobs.
The next eight statistics sobs4 , . . . , sobs11 are sums and products
of either two or all values of sobs1 , sobs2 , sobs3 . The final 50
statistics are noise: sobs12 , . . . , sobs61 ∼ Uniform(0, 1).

We first infer the posterior distribution from drf, follow-
ing the example in Dinh et al. (2024). The reference table

consists of N = 20, 000 entries, each of which results from
sampling θ and y1, . . . , yn from (4), then computing s simi-
larly to sobs. The algorithm drf then infers the joint posterior
distribution for θ , which we compare against the true poste-
rior distribution.

Figure 1a shows the comparison for α = 4, β = 5. The
posterior distributions fromABC-DRF are in agreementwith
the true density. Furthermore, the variable importance anal-
ysis detects information in s1, . . . , s11, which indeed contain
signals for the distribution of yobs (Figure 1b). In contrast, the
pure noise statistics s12, . . . , s61 are deemed unimportant, as
expected.

Compared toabcrf,drf’s ability to infer the joint distri-
bution is crucial for inference problemswhere the parameters
are known to be dependent. We will experiment with such
models in Section 5.

4 ABC sequential Monte Carlo with random
forests

Despite their promise as relatively simple ABC approaches,
there are some drawbacks in using abcrf and drf in prac-
tice. First, their performance typically improves as the forest
size increases. The number of splitting criterion computa-
tions in growing a forest of B balanced trees from a reference
table of size N , where each split considers ntry statistics,
is O(B · ntry · N · log N ). For complex problems involving
many statistics and requiring large reference tables, the forest
can become too computationally expensive to construct. Sec-
ond, similar to other ABC implementations, the accuracy of
the estimated posterior distributions depends on the number
of simulations N . However, because the number of splits is
approximately N log N in balanced trees and more in unbal-
anced trees, the application of abcrf or drf in difficult
inference problems where many simulations are necessary
can demand more memory than available resources.

To alleviate these problems, we propose integrating the
random forest methods within the ABC sequential Monte
Carlo (ABC-SMC) framework (Algorithm 5), which was
introduced by Toni et al. (2008) as a novel approach to solve
the problem of low acceptance rates in the ABC rejection
(ABC-REJ) method. ABC-SMC refines the particle popu-
lation drawn from the prior distribution iteratively, where
the posterior distribution from iteration t − 1 becomes the
prior distribution for iteration t . A common choice for the
sampling distribution in iteration t is gt (θ) = ∑Nt−1

k=1 w
∗(k)
t−1 ·

Kt (θ
(k)
t |θ(k)

t−1), which samples a random particle from iter-
ation t − 1 then perturbs it with a Markov kernel Kt (θ |θ ′)
(Sisson and Fan 2018). The statistics simulated from this
new particle are compared against data statistics with a ker-
nel function Hh centered at 0. The kernel scale parameters
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Fig. 1 Inference of θ = (θ1, θ2) in the hierarchical model, with
α = 4, β = 5.a: Joint posterior distributions for θ1 and θ2, inferred from
ABC-DRF with N = 20, 000 simulations (yellow contours) against
ground truth (density heatmap in gray-scale), with marginal distribu-

tions for each parameter from ABC-DRF (yellow line) against ground
truth (black histogram). b: Variable importance analysis for summary
statistics from ABC-DRF, performed with N = 1, 000 simulations

decrease in successive iterations (i.e., h1 ≥ · · · ≥ hT ), hence
only particles increasingly closer to sobs are retained. The
thresholds c2, . . . , cT further control the acceptance or rejec-
tion and resampling of particles in each iteration. The final set

of particles
{
θ

(1)
T , . . . , θ

(N )
T

}
from iteration T is drawn from

πABC-SMC(θ |sobs) ∝
∫

HhT (‖s(i)
t −sobs‖)· p(s|θ)·π(θ) ds,

where p(s|θ) is the probability distribution of observed
statistics s from the model, given parameter θ (Sisson and
Fan 2018).

We develop ABC sequential Monte Carlo with random
forests (ABC-SMC-(D)RF), which incorporate abcrf and
drf into ABC-SMC. The first version, ABC-SMC-DRF
(Algorithm 6), is applicable for problems with multiple
parameters. The first iteration samples the parameter sets
directly from the prior distribution, then applies ABC-DRF
on the reference table R ∈ R

N1×(|S|+|�|) that combines all
parameter sets and corresponding statistics. In subsequent
iterations, parameter sets are drawn from particles in the pre-
vious iteration, with weights estimated from ABC-DRF for
sobs. The parameter sets are then perturbed with a multivari-
ate Markov kernel, before ABC-DRF is similarly applied.
Finally, the ABC-DRF weights are re-calibrated (Step 15,
Algorithm 6), similar to ABC-SMC (Step 12, Algorithm 5).

The second version, ABC-SMC-RF (Algorithm7), is built
around ABC-RF, and designed for univariate problems or
finding marginal distributions for multivariate models. Each

Algorithm 5: ABC-SMC (adapted from Alg. 4.7, page
111, Sisson and Fan 2018)
1 for t = 1, . . . , T do
2 if t = 1 then
3 for i = 1, . . . , Nt do
4 Generate θ

(i)
1 ∼ g1(θ), an initial sampling distribution

5 Simulate data y(i)
1 with θ

(i)
1 , and compute

s(i)
1 = S

(
y(i)
1

)

6 Compute weight

w
∗(i)
1 = Hh1

(∥∥∥s(i)
1 − sobs

∥∥∥
)

π
(
θ

(i)
1

)/
g1

(
θ

(i)
1

)

7 else
8 Construct sampling distribution gt (θ) from{(

θ
(k)
t−1, w

∗(k)
t−1

)}

9 for i = 1, . . . , Nt do
10 Generate θ

(i)
t ∼ gt (θ)

11 Simulate data y(i)
t with θ

(i)
t , and compute

s(i)
t = S

(
y(i)
t

)

12 Compute weight

w
(i)
t = Hht

(∥∥∥s(i)
t − sobs

∥∥∥
)

π
(
θ

(i)
t

)/
gt

(
θ

(i)
t

)

13 Reject θ(i)
t with probability 1 − r (i)

t with

r (i)
t = min

(
1, w

(i)
t
ct

)
, and go to Step 10

14 Otherwise, accept θ(i)
t and set modified weight

w
∗(i)
t = w

(i)
t /r (i)

t
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Algorithm 6: ABC-SMC-DRF for multiple parameters

1 for t = 1, . . . , T do
2 for i = 1, . . . , Nt do
3 if t = 1 then
4 Generate θ

(i)
1 ∼ π(θ)

5 else

6 Sample θ∗ from
{(

θ
(k)
t−1, w

∗(k)
t−1

)}
k=1,...,Nt−1

7 Generate θ
(i)
t ∼ Kt (θ |θ∗)

8 If π
(
θ

(i)
t

)
= 0, then return to Step 6

9 Simulate data y(i)
t with θ

(i)
t , and compute s(i)

t = S
(
y(i)
t

)

10 Form R =
{(

θ
(1)
t , s(1)

t

)
, . . . ,

(
θ

(Nt )
t , s(Nt )

t

)}

11 Perform DRF (Algorithms 3 and 4) with reference table R to

compute weights w
(1)
t , . . . , w

(Nt )
t for observed statistics sobs

12 if t = 1 then
13 w

∗(i)
t = w

(i)
t

14 else

15 w
∗(i)
t = w

(i)
t

π
(
θ

(i)
t

)

∑Nt−1
k=1 w

∗(k)
t−1 ·Kt

(
θ

(i)
t

∣∣∣θ(k)
t−1

)

16 Normalize
{
w

∗(i)
t

}

parameter in an iteration is sampled independently from the
previous iteration and then perturbed. The statistics are then
computed for the whole parameter set. The reference table
consists of these statistics andvalues corresponding to a given
parameter, from which ABC-RF predicts the parameter’s
marginal distribution based on sobs. The ABC-RF weights
are then re-calibrated and normalized.

The kernel values Hh
(∥∥s − sobs

∥∥)
in ABC-SMC (Algo-

rithm 5) increase as s → sobs. In the ABC-SMC-(D)RF
algorithms, these kernels are replaced by the weights from
ABC-DRF in Algorithm 6 and ABC-RF in Algorithm 7.
These weights behave similarly to the ABC-SMC kernels:
particles with statistics s closer to sobs fall into the same
leaves as the data more often across the forest, therefore the
corresponding parameters θ are more heavily weighted. Fur-
thermore, in ABC-SMC, smaller scale parameters ht reduce
the kernel diffusion, that is, only particles with

∥∥s − sobs
∥∥

increasingly close to 0 have high weights. Decreasing the
minimum node sizes Nmin in ABC-(D)RF has the same
effect, as it reduces the accepted particles across the forest
to only those with statistics very close to those of the data.
Finally, ABC-SMC-(D)RF does not reject particles before
(D)RF is performed in each iteration except for those outside
the prior distribution, and hence is analogous to ABC-SMC
with rejection thresholds c2 = · · · = cT = 0.

We have developed an R package abcsmcrf based on
Algorithms 6 and 7. It offers several practical advantages
when compared to direct applications of abcrf and drf.
First, constructing iterative random forests of size B from ref-

Algorithm 7: ABC-SMC-RF for single parameters

1 for t = 1, . . . , T do
2 for i = 1, . . . , Nt do
3 if t = 1 then
4 Generate θ

(i)
1 ∼ π(θ)

5 else
6 for j = 1, . . . , |�| do
7 Sample θ∗

j from
{(

θ
(k)
j,t−1, w

∗(k)
j,t−1

)}
k=1,...,Nt−1

8 Generate θ
(i)
j,t ∼ K j,t (θ |θ∗

j )

9 If π j

(
θ

(i)
j,t

)
= 0, then return to Step 7

10 θ
(i)
t ←

(
θ

(i)
1,t , . . . , θ

(i)
|�|,t

)

11 Simulate data y(i)
t with θ

(i)
t , and compute s(i)

t = S
(
y(i)
t

)

12 for j = 1, . . . , |�| do
13 Form R j =

{(
θ

(1)
j,t , s

(1)
t

)
, . . . ,

(
θ

(Nt )
j,t , s(Nt )

t

)}

14 Perform ABC-RF (Algorithms 1 and 2) with reference

table R j to compute weights w
(1)
j,t , . . . , w

(Nt )
j,t for observed

statistics sobs

15 if t = 1 then
16 w

∗(i)
j,t = w

(i)
j,t

17 else

18 w
∗(i)
j,t = w

(i)
j,t

π j

(
θ

(i)
j,t

)

∑Nt−1
k=1 w

∗(k)
j,t−1·K j,t

(
θ

(i)
j,t

∣∣∣θ(k)
j,t−1

)

19 Normalize
{
w

∗(i)
j,t

}

erence tables of sizes N1, . . . , NT requiresO(B ·∑T
t=1(Nt ·

log Nt )) splits, assuming balanced trees. This requires less
computational resources than growing a random forest based
on a reference table of size N = ∑T

i=1 Ni , which con-
tainsO (B · N · log N )) splits. Therefore, with the same total
number of model simulations, ABC-SMC-(D)RF requires
less memory and computational runtime. Second, similar to
the behavior of ABC-SMC compared to ABC-REJ, ABC-
SMC-(D)RF is likely to converge to the posterior distribution
faster than ABC-RF or ABC-DRF, because the parameter
distributions are constantly updated to focus on regions in
the parameter space � that best explain sobs. We will test
this with some examples in the next section. Finally, unlike
ABC-RF and ABC-DRF which require the full reference
table before forest construction and parameter prediction,
the approximated posterior distribution from each iteration
of ABC-SMC-(D)RF can be compared against the previous
iteration to assess whether it has converged, potentially fur-
ther lowering computational expense.

5 Results

In this section, we compare the performance of ABC-
SMC-(D)RF (Algorithm 6 or 7) across different infer-
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Fig. 2 Parameter inference for the deterministic Lotka-Volterra model.
a, b: Iterative posterior distributions for reaction rates a (a) and b (b)
fromABC-SMC-RF. c, d: Marginal posterior distributions for a (c) and

b (d), fromABC-SMC,ABC-DRF andABC-SMC-DRF. Black vertical
lines denote true parameter values

ence problems, against ABC-SMC (Algorithm 5), ABC-RF
(Algorithms 1, 2) and ABC-DRF (Algorithms 3, 4). Unless
specified otherwise, for ABC-RF, ABC-DRF and ABC-
SMC-(D)RF, we use the default parameters in abcrf and
drf for tree count B, candidate statistic count ntry, leaf size
threshold Nmin, root node subsample size nsample, etc.

5.1 Deterministic Lotka-Volterra model

TheLotka-Volterramodel describes the interaction dynamics
between predators and prey (Lotka 1925; Volterra 1928). The
deterministic model for the number of prey x and predators
y is in the form of paired nonlinear differential equations:

dx

dt
= ax − cxy

dy

dt
= bxy − dy

where a is the prey’s birth rate, d is the predator’s death
rate, and c and b are the prey’s death rate and predator’s
birth rate due to predation, respectively. We fix c = d = 1
and seek to infer θ = (a, b) from prior distribution a, b ∼
Uniform(−10, 10). Similar to Toni et al. (2008), we solve the
ODE system with initial condition (x(0), y(0)) = (1, 0.5)

with θ = (1, 1), and sample (x, y) at eight time points
between t = 0 and t = 15, then add Normal(0, 0.52)
noise to each data point to form the observed statistics
sobs = {x1, y1, . . . , x8, y8}.

Wefirst implementABC-SMC-(D)RF formultiple param-
eters. Algorithm 6 is appliedwith T = 4 iterations, eachwith
Nt = 5, 000 simulations in the reference table, and perturba-
tion kernels Kt (θ |θ∗) = θ∗ + Uniform(−0.1, 0.1). Figures
2a, b show the distributions of a and b after each iteration t
in abcsmcrf. The distributions become more concentrated
as t progresses, but stay centered around the true values of
(a, b) (Table 1).

To evaluate abcsmcrf’s performance, we compare the
final posterior distributions with ABC-DRF and ABC-SMC.
Algorithm drf is performed on a reference table of size
N = 20, 000, to match the total number of simula-
tions in abcsmcrf. We use the R package EasyABC
(Jabot et al. 2023) to implement ABC-SMC with T =
5 iterations. EasyABC uses the distance d

(
s, sobs

) =∑8
i=1

[
(xi − xobsi )2 + (yi − yobsi )2

]
to compare simulated

statistics s against observation sobs, and adaptive perturbation
kernels Kt (θ |θ ′) = Normal

(
θ ′, 2 · var (θt−1)

)
as proposed

in Beaumont et al. (2009). Referencing Toni et al. (2008), we
impose the series of tolerance thresholds ε1 = 30.0, ε2 =

123



Statistics and Computing           (2025) 35:219 Page 9 of 16   219 

Table 1 Means and variances of marginal posterior distributions for
the deterministic Lotka-Volterra model from ABC-SMC-DRF, ABC-
DRF, and ABC-SMC. The best result for each statistic across different

algorithms is in bold (E(a), E(b) closest to true values (a, b) = (1, 1),
and lowest Var(a) and Var(b)

Statistics ABC-SMC-DRF iterations ABC-DRF ABC-SMC

1 2 3 4 (Final posterior)

E(a) 1.1699 0.2772 0.6376 0.9177 0.7727 1.3174

Var(a) 1.5548 0.1618 0.7091 0.0941 0.5470 0.1177

E(b) 1.4605 1.3320 1.0431 0.8603 1.1808 1.0178

Var(b) 1.0441 0.0806 0.1920 0.0468 0.3951 0.1154

16.0, ε3 = 6.0, ε4 = 5.0, ε5 = 4.3. To produce 1,000
accepted particles, EasyABC requires N = 56, 850 sim-
ulations.

Figures 2c, d present the posterior distributions approxi-
mated by the ABC implementations. The marginal distribu-
tions fromABC-SMC-DRF are as centered and concentrated
around the true values for (a, b) as ABC-SMC (Table 1). In
contrast, even though the distributions from DRF are cen-
tered around the ground truth, the variances are consistently
higher, indicating higher uncertainty.

5.2 Stochastic biochemical reaction systems

We illustrateABC-SMC-DRF’s application in inferring reac-
tion rates for biochemical systems.

We first examine the Michaelis-Menten model, which
describes the kinetics between an enzyme E that binds to
a substrate S to form a complex ES, leading to product P:

ES → E + P (7)

E + S → ES (8)

ES → E + S (9)

The state of the system at time t can be described as
X(t) = [E(t), S(t), ES(t), P(t)], the counts of each type
of molecule. The time for the next reaction (7), (8) and (9) to
occur is exponentially distributed, with rates defined by their
propensity functions:

α1(X(t)) = c̄1 · ES(t); c̄1 = c1

α2(X(t)) = c̄2 · E(t) · S(t); c̄2 = 10c2

nA · vol
α3(X(t)) = c̄3 · ES(t); c̄3 = 10c3

respectively, where the Avagadro’s constant nA = 6.023 ·
1023 approximates the number of molecules in a mole, vol
= 10−15 is the volume of the system, and θ = (c1, c2, c3)
parameterizes theMichaelis-Mentenmodel for different bio-
chemical systems (Wilkinson 2018, Example 7.3).

The initial state is defined by E(0) = 2 · 10−7 · nA · vol,
S(0) = 5·10−7 ·nA·vol, and ES(0) = P(0) = 0 (Wilkinson
2018).We seek to infer θ from sobs = {X(t), t = 1, . . . , 10},
simulated with true parameters c1 = 0.1, c2 = 6, c3 = −4.
We compare the results from drf with N = 20,000 simu-
lations, and abcsmcrf with T = 5 iterations, each with
reference tables of size Nt = 4,000, from uniform prior
distributions π (c1) = U(0, 1), π (c2) = U(5, 7), π (c3) =
U(−5,−3). The perturbation kernels in abcsmcrf in each
iteration are Kt (c1|c′

1) = c′
1 +U(−0.05, 0.05), Kt (c2|c′

2) =
c′
2 +U(−0.1, 0.1), and Kt (c3|c′

3) = c′
3 +U(−0.1, 0.1). All

simulations are generated by applying Gillespie’s algorithm
(Gillespie 1977).

Comparing the results for c1 and c2 shows that ABC-
SMC-DRF’s posterior distributions (c1: mean = 0.102,
95% CI = [0.070, 0.138]; c2: mean = 5.986, 95% CI =
[5.886, 6.079]) are centered closely around the true values of
c1 = 0.1, c2 = 6, similarly to ABC-DRF, but with narrower
confidence intervals (ABC-DRF c1: mean = 0.095, 95%CI =
[0.026, 0.171]; c2: mean = 5.963, 95% CI = [5.766, 6.127])
(Figure 3a, b). In contrast, both methods are uncertain about
the true distribution for c3 (ABC-SMC-DRF: mean = -3.882,
95% CI = [−4.945,−3.040]; ABC-DRF: mean = -4.011,
95% CI = [−4.928,−3.102]) (Figure 3c).

Analyzing the reaction system reveals a likely reason:
assuming true values of θ , reactions (7) and (9) occur with
rates c̄1 = 0.1 and c̄3 = 10−4, respectively. Because of the
big difference in magnitudes, complex ES overwhelmingly
undergoes reaction (7), while reaction (9) rarely occurs and
does not significantly impact the observed molecule counts.

We apply Morris’s global sensitivity analysis (Morris
1991) to study the parameter identifiability (R package
sensitivity (Iooss et al. 2024; Monari and Strachan
2017)). The method involves computing the elementary
effect of each parameter, defined in this case as the change
in the statistics divided by the change in the parameter,
across different sampling schemes, and analyzing its absolute
mean μ∗ and standard deviation σ . The study shows that c1
(μ∗ = 0.019, σ = 0.012) and c2 (μ∗ = 0.018, σ = 0.002)
have significantly higher absolute mean elementary effects
than c3 (μ∗ = 0.001, σ = 0.002) (Figure 3d). This implies
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that varying c3 has little to no effect on the observed statis-
tics, consistent with earlier findings (Degasperi and Gilmore
2008).

Indeed, despite the uncertainty in c3, simulations per-
formedwith θ values sampled from theposterior distributions
of ABC-DRF and ABC-SMC-DRF are centered around the
observed values sobs across different molecules and time
points (Figure 3e, f, g, h). Moreover, consistent with ABC-
SMC-DRF’s higher certainty in the inference for c1 and
c2, molecule counts simulated from its posterior distribution
have significantly reduced range compared to ABC-DRF.

5.3 Stochastic birth-deathmodels

5.3.1 Linear birth-death process

Wenext examine the performance ofABC-SMC-DRF for the
homogeneous linear birth-death process illustrated in Tavaré
(2018), for which exact results may be found. The model
starts at time 0 with Z(0) = z0 individuals, each of which
divides at rateλ > 0 and dies at rateμ > 0, independently for
each individual. The number of individuals at time t > 0 is
denoted Z(t), with expected value E[Z(t)] = Z(0)e(λ−μ)t .

The probability P(Z(t) = j | Z(0) = i) that there are j
individuals at time t , given that there are i individuals at time
0, follows from Keiding (1975) as

P(Z(t) = j | Z(0) = i)

=
min(i, j)∑
l=0

(
i
l

)
(1 − α(t))lα(t)i−l

(
j − 1
i − l

)
×

(1 − β(t))lβ(t) j−l , j = 1, 2, . . . (10)

and

P(Z(t) = 0 | Z(0) = i) = α(t)i , (11)

where α(t) and β(t) are defined by

α(t) = μ
(
e(λ−μ)t − 1

)

λe(λ−μ)t − μ
, β(t) = λ

μ
α(t), if λ 
= μ;

α(t) = β(t) = λt

1 + λt
, if λ = μ,

Kendall (1948). The Markov property implies that the like-
lihood for λ and μ, given an observation yobs = (Z(t1) =
z1, . . . , Z(tn) = zn) with zn > 0, is

f

(
λ,μ

∣∣∣∣yobs
)

=
∏n−1

i=0 P(Z(ti+1) = zi+1 | Z(ti ) = zi )

P(Z(tn) > 0 | Z(0) = z0)
,

(12)

which may be calculated from (10) and (11). The observa-
tions used in the example below are generated on a grid of
time points t1 = 1/25, t2 = 2/25, . . . , t25 = 1, and z0 = 10.

Instead of approximating the posterior distribution of θ =
(λ, μ), we approximate that of the extinction parameter μ/λ

and the Malthusian parameter λ − μ, so that θ = (μ/λ, λ −
μ). The following prior distributions were used:

λ − μ ∼ Gamma(shape = 3, rate = 1)

μ/λ ∼ Beta(5, 5)

These priors guarantee that λ > μ, implying that the proba-
bility of extinction is less than 1.We evaluate ABC-SMC-RF
and ABC-SMC-DRF with T = 4 iterations, each with
Nt = 5, 000 simulations in the reference table and the
random forest in each iteration is constructed from B =
2, 500 trees. We implement the normal perturbation ker-

nels Kt (λ − μ|λ∗ − μ∗) = N
(
λ∗ − μ∗, 2 · σ

λ−μ
t−1

)
and

Kt (μ/λ|μ∗/λ∗) = N
(
μ∗/λ∗, 2 · σ

μ/λ
t−1

)
, where σ

λ−μ
t−1 and

σ
μ/λ
t−1 are the empirical variances of the Malthusian and

extinction parameters from iteration t − 1. This perturbation
framework was proven to be efficient in the context of ABC-
SMC (Beaumont et al. 2009). The values of σ

λ−μ
t−1 and σ

μ/λ
t−1

are reported inTable 2. Figure 4present the joint andmarginal
posterior distributions from ABC-SMC-RF and ABC-SMC-
DRF. The results from both methods are close to the true
posterior distribution.

5.3.2 Controlled branching process

We also investigate the application of ABC-SMC-(D)RF for
a discrete-time controlled branching process developed by
González et al. (2022). Let Zn be the population size at gen-
eration n = 0, 1, . . . , which is defined recursively via

Z0 = 1

Zn+1 =
φn(Zn)∑
j=1

Xn, j

where Xn, j is the number of offspring from the j th individ-
ual at generation n and the control variable φn(z) depends
on the population size z at time n, and is the number of
individuals that can be parents of generation n + 1. Here,
φn(z) ∼ Bin(ξ(z), γ ) with ξ(z) = z + �log z�. González
et al. (2022) modeled Xn, j as i.i.d. with respect to n and
j , with probabilities ppp(κ) = {pk = P(Xn, j = k), k =
0, 1, . . . , κ} where κ is the maximum offspring capacity per
individual. The data is simulated with γ = 0.8, κ = 4 and
ppp(κ) ∼ Bin(4, 0.9). From data statistics {Z1, . . . , Z10} and
φ9(Z9) (e.g., the number of parents of the last generation),
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Fig. 3 Parameter inference for the Michaelis-Menten reaction system.
a, b, c: Marginal distributions for reaction rates c1 (a), c2 (b) and c3 (c),
inferred with ABC-DRF and ABC-SMC-DRF, compared against true
values (black lines). d: Absolute mean (μ∗) and standard deviation (σ )
of elementary effects of c1, c2 and c3, using Morris’s global sensitivity

analysis. e, f, g, h: Range of molecule numbers for E (e), S (f), ES
(g) and P (h) across time, simulated with θ ∼ πABC−DRF (θ |sobs) and
πABC−SMC−DRF (θ |sobs) (box plots), compared against observed data
sobs (black dots and lines)
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Table 2 Empirical variances in
ABC-SMC-RF and
ABC-SMC-DRF across
different iterations

Variance ABC-SMC-RF iterations ABC-SMC-DRF iterations

t = 2 t = 3 t = 4 t = 2 t = 3 t = 4

2 · σλ−μ
t−1 0.1207 0.1166 0.1514 0.2349 0.2785 0.2187

2 · σ
μ/λ
t−1 0.0273 0.0323 0.0343 0.0231 0.0234 0.0209

Fig. 4 Parameter inference for the linear birth-death branching pro-
cess. a: Joint posterior distributions for the Malthusian parameter λ−μ

and the extinction parameter μ/λ from ABC-SMC-DRF (yellow con-

tours) against ground truth (Eq. 12, density heatmap in gray-scale).
b, c: Marginal distributions for λ − μ (b) and μ/λ (c), inferred with
ABC-SMC-RF and ABC-SMC-DRF

we seek to find parameters θ = {γ, κ, ppp(κ)} from prior dis-
tributions

γ ∼ β(1, 1)

κ ∼ U(2, 15)

ppp(κ) ∼ D(κ + 1, ακ = (1, . . . , 1)).

As in González et al. (2022), we analyze the results by exam-
ining the mean offspring count m = ∑κ

k=1 k · pk(κ) instead
of ppp(κ).

Similar to the linear birth-death process above,weperform
ABC-SMC-RF and ABC-SMC-DRF with T = 4 iterations,
Nt = 5, 000 simulations per iteration and B = 2, 500 trees
in each random forest. We implement the uniform perturba-
tions Kt (κ|κ∗) = U(κ∗ − 3, κ∗ + 3), Kt (γ |γ ∗) = U(γ ∗ −
0.05, γ ∗ +0.05) and Kt (p j |p∗

j ) = U(p∗
j −0.05, p∗

j +0.05).
Figure 5 shows the comparisons between ABC-SMC-(D)RF

posterior distributions and the true parameter values κ = 4,
m = 3.6 and γ = 0.8.

Figure 5 shows the inferred marginal posterior distribu-
tions of κ (Figure 5b), m (Figure 5c), γ (Figure 5d), as
well as the joint posterior distribution of (γ,m) from ABC-
SMC-DRF (Figure 5a). The marginal distributions form and
γ from both ABC-SMC-RF and ABC-SMC-DRF are cen-
tered around the true values. However, the ABC-SMC-RF
distribution for m is more concentrated compared to ABC-
SMC-DRF, and the reverse holds for γ . Table 3 also shows
that themean andmedian of each parameter distribution con-
verge to the true values after successive ABC-SMC-DRF
iterations, with decreasing variances. This results in good
approximations for m and γ , with relative errors < 10% for
both parameters in the final iteration.

Both ABC-SMC-RF and ABC-SMC-DRF overestimate
κ (Figure 5b). However, these distributions are similar to
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Fig. 5 Parameter inference for the controlled branching process. a:
Joint posterior distributions form and γ from ABC-SMC-DRF (yellow
contours) against true values (broken lines). b, c, d: Marginal distri-

butions for κ (b), m (c) and γ (d), inferred with ABC-SMC-RF and
ABC-SMC-DRF, compared to true values (black lines)

the results reported by González et al. (2022) (Figure 1 in
González et al. 2022). As noted by the authors, the model
with maximum offspring count κ behaves identically to one
with κ ′ > κ where pκ+1 = · · · = pκ ′ = 0. Therefore, κ can
be inferred to be greater than the true value κ̄ , as long as the
probabilities p j with j > κ̄ are negligible (e.g.,< 10−3).We
note thatGonzález et al. (2022) utilizes amulti-step inference
framework, where κ is estimated first with ABC-SMC and
(γ,m) are then inferred with ABC-rejection, conditioned on
the selected κ . In comparison, our framework of using ABC-
SMC-(D)RF to infer κ ,m and γ simultaneouslymay bemore
practical for implementation.

There aremultiple sources of variability in theABC-SMC-
(D)RF results, including both the stochastic simulations that
form the reference table in each iteration and the construction
of the random forests. Therefore,we perform theABC-SMC-
(D)RF inference for the controlled branching process 500
times and analyze the changes in the inferred distributions
(Table 4). Overall, there is some evidence that ABC-SMC-
DRF underestimates m and overestimates γ ; the true values

of both m = 3.6 and γ = 0.8 fall outside of their respective
95% interquantile ranges, [q2.5%, q97.5%]. In comparison, the
interquantile ranges from ABC-SMC-RF successfully con-
tain the true values, albeit with higher variance for m. This
agrees with the results from the single inference run shown
in Figure 5.

5.3.3 A logistic branching process

Our final branching example concerns the logistic branching
process discussed by Lambert (2005). This has state space
{0, 1, 2, . . .} and non-zero transition rates given by

n → n + 1 at rate nλ;
n → n − 1 at rate n(μ + (n − 1)c), (13)

for non-negative parameters λ,μ, c. The case c = 0 cor-
responds to the model discussed in Section 5.3.1, and we
assume henceforth that c > 0. Lambert showed that there
are two dichotomous behaviors in this model, depending on
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Table 3 Means, medians and variances of the marginal posterior dis-
tributions for the controlled branching process from ABC-SMC-DRF

Statistics ABC-SMC-DRF iterations

1 2 3 4 (Final posterior)

E(κ) 6.326 5.478 5.239 5.406

q50%(κ) 6 5 5 5

Var(κ) 3.297 1.900 1.332 1.076

E(γ ) 0.833 0.856 0.854 0.823

q50%(γ ) 0.873 0.872 0.869 0.825

Var(γ ) 0.013 0.007 0.006 0.005

E(m) 3.368 3.225 3.258 3.353

q50%(m) 3.106 3.137 3.165 3.332

Var(m) 0.500 0.243 0.234 0.259

whether μ = 0 or μ > 0. When μ = 0 the population
size Z(·) remains positive and converges in distribution to a
Poisson random variable P with mean λ/c, conditional on
P > 0. When μ > 0 the population goes extinct with prob-
ability 1. If we observe the population size at time points
t1 < t2 < . . . < tn and it happens that Z(tn) > 0, we might
ask whether there is evidence that μ = 0 or μ > 0.

This question can be addressed in principle using abcrf
and drf approaches, by assuming priors for μ and c (and,
w.l.o.g., λ = 1), generating a reference set and proceeding
as earlier. One object of interest is the posterior probability
that μ = 0, which gives information about the likelihood the
population will survive.

Rather than detail the results here, we note that this exam-
ple seems to be a case where the SMC version of the random
forest methods is not feasible. This is because the algo-
rithms successively sample new particles from the previous
iteration and perturb them with Markov kernels, assum-
ing smooth transitions. The perturbed particles in iterations
t ≥ 2 therefore include μ > 0 with probability one, hence
ABC-SMC-(D)RF is incapable of accurately evaluating the
probability that μ = 0.

6 Discussion

In this paper, we introduce a newBayesian inferencemethod,
Approximate Bayesian Computation sequentialMonte Carlo

with random forests (ABC-SMC-(D)RF). It inherits random
forest’s non-parametric nature, resulting in less dependence
on user-defined arguments compared to traditional ABC
methods such as ABC-REJ, MCMC and ABC-SMC.

The random forest is embedded in a sequential Monte
Carlo regime that progressively updates the parameter distri-
butions to focus on regions in the parameter spacewith higher
likelihood.We perform numerical experiments for determin-
istic and stochastic models in ecology, population genetics
and systems biology, and observe that ABC-SMC-(D)RF
typically results in better posterior approximations than pre-
vious RF methods. The Lotka-Volterra example illustrates
that generic ABC-SMC-RF produces results comparable to
traditional ABC implementations with optimized arguments.

However, there are several areas of improvement that
can extend ABC-SMC-(D)RF’s capabilities. First, a hyper-
parameter in ABC-SMC-(D)RF that potentially has an
impact on the results is the choice of perturbation ker-
nels Kt (θ |θ ′), which should balance between exploring the
parameter space and targeting the regions already found
to contain high likelihood from previous iterations. In
ABC-MCMC and ABC-SMC, it is common to choose uni-
form or Gaussian kernels, but the optimal kernel form
and parameterization for specific problems may be com-
plicated zdrovandi2011estimation,lee2012choice. A typical
approach is to employ kernels that are adjusted dynami-
cally depending on the performance of the previous iteration
(Beaumont et al. 2009; Del Moral et al. 2012; Liu et al.
2000; Filippi et al. 2013; Atchadé and Fort 2010). By default,
ABC-SMC-(D)RF implements Gaussian kernels Kt (θ |θ ′) =
Normal(θ ′, 2·var(θt−1)), proposedbyBeaumont et al. (2009)
for ABC-SMC. Further work might evaluate other adaptive
kernel frameworks.

Second, it is sometimes not necessary to continue iteration
in ABC-SMC-(D)RF, if further computation is unlikely to
yield significant improvements in the posterior distributions.
There have been a number of papers determining the stopping
criterion in ABC-SMC (for example, Prangle (2017)), and
their incorporation in ABC-SMC-(D)RF promises to lower
the computational cost while retaining accuracy.

Finally, in this paper we have focused on parameter infer-
ence. ABC-RF can perform model selection (Pudlo et al.
2016), and the same framework could potentially be imple-
mented in ABC-DRF and ABC-SMC-(D)RF. This will be

Table 4 Mean (E), 2.5th and 97.5th percentiles ([q2.5%, q97.5%]), and standard deviation (std) of ABC-SMC-(D)RF posterior marginal distribution
medians for the controlled branching process across 500 runs. The data statistics are the same across different inference runs

Method κ γ m

E [q2.5%, q97.5%] std E [q2.5%, q97.5%] std E [q2.5%, q97.5%] std

ABC-SMC-RF 5.8 [5, 7] 0.6 0.817 [0.795, 0.841] 0.012 4.03 [3.05, 5.05] 0.53

ABC-SMC-DRF 5.3 [5, 6] 0.5 0.864 [0.832, 0.902] 0.020 3.34 [3.15, 3.56] 0.10
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relevant for problems similar to the logistic branchingprocess
in Section 5.3.3, where there is interest in model selection.
ABC-SMC-(D)RF is designed as a wrapper around abcrf
(Marin et al. 2022) and drf (Michel and Ćevid 2021) and
can therefore be updated together with the original libraries.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-025-10748-
x.
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