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Abstract 
Cancer development is characterized by chromosomal instability, manifesting in frequent 

occurrences of different genomic alteration mechanisms ranging in extent and impact. 

Mathematical modeling can help evaluate the role of each mutational process during 

tumor progression, however existing frameworks can only capture certain aspects of 

chromosomal instability (CIN). We present CINner, a mathematical framework for mod-

eling genomic diversity and selection during tumor evolution. The main advantage of 

CINner is its flexibility to incorporate many genomic events that directly impact cellular 

fitness, from driver gene mutations to copy number alterations (CNAs), including focal 

amplifications and deletions, missegregations and whole-genome duplication (WGD). We 

apply CINner to find chromosome-arm selection parameters that drive tumorigenesis in 

the absence of WGD in chromosomally stable cancer types from the Pan-Cancer Analysis 

of Whole Genomes (PCAWG, n = 718 ). We found that the selection parameters predict 

WGD prevalence among different chromosomally unstable tumors, hinting that the selec-

tive advantage of WGD cells hinges on their tolerance for aneuploidy and escape from 

nullisomy. Analysis of inference results using CINner across cancer types in The Cancer 

Genome Atlas ( n = 8207 ) further reveals that the inferred selection parameters reflect the 

bias between tumor suppressor genes and oncogenes on specific genomic regions. Direct 

application of CINner to model the WGD proportion and fraction of genome altered (FGA) 

in PCAWG uncovers the increase in CNA probabilities associated with WGD in each 

cancer type. CINner can also be utilized to study chromosomally stable cancer types, by 

applying a selection model based on driver gene mutations and focal amplifications or 

deletions (chronic lymphocytic leukemia in PCAWG, n = 95 ). Finally, we used CINner to 

analyze the impact of CNA probabilities, chromosome selection parameters, tumor growth 
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dynamics and population size on cancer fitness and heterogeneity. We expect that CINner 

will provide a powerful modeling tool for the oncology community to quantify the impact 

of newly uncovered genomic alteration mechanisms on shaping tumor progression and 

adaptation.

Author summary
Chromosomal instability (CIN) is a hallmark of cancer, characterized by the acquisition 
of structural and numerical chromosomal alterations in malignant cells. Toward under-
standing how CIN affects cancer evolution and cell fitness, it is necessary to integrate 
experimental and computational approaches that capture the temporal dynamics and 
consequences of CIN in tumor tissues. We present CINner, a framework for modeling 
CIN during cancer evolution. CINner is designed to output data that are compatible 
with both bulk and single-cell DNA sequencing methods, enabling the analysis of tumor 
heterogeneity and clonal evolution at different resolution levels. Application of CINner 
to bulk data reveals its ability to characterize specific cancer types with chromosome-arm 
selection parameters, which reflect the bias between tumor suppressor genes and onco-
genes on those arms. CINner can also be used to model the increase in CIN associated 
with whole-genome duplication, a frequently observed and early event in many cancers. 
On the other hand, CINner can also study cancer types driven mainly by changes in 
specific genes. CINner is available as an R library, and we expect that it will provide a 
powerful modeling tool for the oncology community, toward quantifying the impact of 
genomic alterations on shaping tumor progression and adaptation.

Introduction
Chromosomal instability (CIN) is a hallmark of cancer, characterized by the acquisition of 
structural and numerical chromosomal alterations in malignant cells. Key manifestations 
of chromosomal instability include chromosome missegregation, whole-genome doubling 
(WGD) and extrachromosomal DNA [1]. CIN generates genetic diversity and phenotypic 
variation among cancer cells, which can facilitate their adaptation to different environmental 
challenges, such as metastasis, drug resistance, and immune evasion [2]. On the other hand, 
CIN can also impair cell fitness by causing cellular stress, impaired DNA repair, and reduced 
proliferation. The role of CIN in cancer is therefore complex and context-dependent, and 
depends on the balance between its benefits and costs. To better understand how CIN affects 
cancer evolution and cell fitness, it is necessary to integrate experimental and computational 
approaches that can capture the temporal dynamics and consequences of CIN in tumor 
tissues.

We present CINner, a framework for modeling chromosomal instability during cancer 
evolution. CINner is designed to output data that are compatible with both bulk and single-
cell DNA sequencing methods, enabling the analysis of tumor heterogeneity and clonal 
evolution at different levels of resolution. One of its advantages over existing algorithms is 
the ability to accommodate distinct copy number aberration (CNA) mechanisms that result 
from CIN and collectively transform a cell’s karyotype and fitness. CINner uses a number of 
numerical techniques to enhance the speed and efficiency of the simulations. It can generate 
the clonal dynamics for cell populations of sizes comparable to real tumors, from which the 
phylogeny tree and cell-specific measurements can be simulated for a subsample of cells, 
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mimicking how DNA-sequencing data is produced. The framework allows for easy imple-
mentation of genomic events ranging in size from WGD to focal amplification/deletion and 
point mutations. The selection component of CINner is formulated as a function mapping a 
cell’s karyotype and single nucleotide variants (SNVs) to its fitness. At one extreme, cell fitness 
can be defined solely upon the aneuploidy pattern, which is appropriate for studying certain 
solid tumors with prevalent widespread CNAs [3–5]. At the other extreme, CINner can model 
cancers that are mostly diploid and driven predominantly by recurrent point mutations and 
focal indices targeting specific driver genes [6–8]. As most cancers can be characterized as 
driven mainly by recurrent mutations or CNAs, or a mixture of both [9], CINner is uniquely 
positioned to uncover evolutionary patterns in many tumors. Finally, cancer cells in CIN-
ner evolve according to a stochastic branching process model, constrained by the carrying 
capacity of the environment. The tumor growth pattern even in the same cancer type can vary 
between exponential and logistic with a decades-long steady-state level, with implications for 
genetic composition, disease progression and clonal extent [10]. The carrying capacity model 
therefore provides the flexibility to examine the effects of the tumor dynamics on its heteroge-
neity and fitness.

Results

CINner models chromosomal instability during cancer evolution
In CINner, each cell is characterized by its copy number (CN) profile, or driver single nucle-
otide variant (SNV) profile, or both (Fig 1a). As genomic regions are amplified or deleted as 
copy number aberrations (CNAs) occur, the SNVs residing in those regions are correspond-
ingly multiplied or lost. CINner models cancer evolution as a branching process [11]. Cell 
lifespan is exponentially distributed with an input turnover rate, similar to previous works 
[12,13]. At the end of its lifespan, the cell either divides or dies. This assumption is mathe-
matically equivalent to other models such as [14], where cell division and death are simu-
lated as two independent exponentially distributed processes [15]. The probability for a cell 
to divide depends on its fitness, determined by its CN and mutation profiles according to a 
selection model. The division probability is also calibrated so that the population size follows 
established dynamics. After a cell division, daughter cells either have the same profiles as the 
mother cell, or harbor CNA or driver SNVs events resulting in new profiles.

Previous mathematical models have mainly studied the evolution of SNVs during cancer 
development [16,17]. Some recent works have focused instead on analyzing the intra-tumor 
heterogeneity and convergence of CNAs [18,19]. CINner is distinct from most cancer evolu-
tion models in its ability to incorporate both SNVs and CNAs during cancer evolution and 
study how they impact the selection landscape simultaneously. SimClone [20] is another algo-
rithm capable of generating synthetic tumor data with both genomic change classes. CINsim 
[21] is another method that allows modeling of CNAs in single cells and focuses on inferring 
rates of chromosome missegregation. However, unlike other methods, CINner can accommo-
date five distinct CNA mechanisms, each with distinct alteration patterns and varying impacts 
on cell fitness (Fig 1b). Whole-genome duplication (WGD) results in one daughter cell with 
double the genomic material of the mother cell. Whole-chromosome missegregation mis-
places a chromosome strand among the two daughter cells. In contrast, only a strand arm is 
misplaced in chromosome-arm missegregation. Finally, focal amplification and deletion typi-
cally impact shorter subchromosomal region in a strand arm, and either increases the number 
of copies or deletes them in this region in one daughter cell.

Three selection models are included. The first model characterizes the selection of chromo-
some arms (Fig 1c), with the following assumptions:
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Fig 1.  Overview of CINner’s mathematical model and simulation algorithm. (a) Each cell is characterized by a copy number profile and/or driver 
mutation profile, which define its fitness rate. The lifespan for each cell is exponentially distributed with the same turnover rate. The probability of a cell to 
divide instead of dying takes into account its fitness rate and the population size, such that the population size follows known dynamics. If a cell divides, it 
can create new clones if a Copy Number Aberration (CNA) event occurs or a new driver mutation is acquired, otherwise the daughter cells belong to the 
same clone. (b) CNA and driver mutation events can occur during a cell division. Each chromosome homolog is represented as a vector, where each entry is 
the CN in a bin (vertical solid lines represent centrosomes, separating the two chromosome arms). Whole Genome Duplication results in one progeny with 
two copies of each homolog in the parent cell’s genome. Other events are chromosome specific. During a whole-chromosome missegregation, one random 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012902  April 3, 2025 5 / 33

PLOS Computational Biology CINner: Modeling and simulation of CIN in cancer at single-cell resolution

•	 For chromosome arms with selection parameter s>1 : gains increase the cell fitness and 
losses decrease fitness. This change increases with higher s.

•	 For arms with s<1 : losses increase fitness and gains decrease fitness. The impact increases 
with higher 1/ s .

The selection parameter serves as an indicator for the balance of tumor suppressor genes 
(TSGs) and oncogenes (OGs), as arms with high OG counts are commonly amplified and 
arms with many TSGs frequently get lost in cancer [22].

The model for selection of driver mutations (Fig 1d) seeks to portray the selection of indi-
vidual TSGs and OGs directly. In this model, the selection parameters for the wild-type (WT) 
and mutant (MUT) alleles of a gene, are defined according to whether the gene functions as a 
TSG or an OG in that specific cancer type. We assume that a cell’s fitness increases when

•	 A TSG is mutated or lost, or

•	 An OG is mutated or gained.

This model is based on the “one-hit” hypothesis [23], where each additional driver gene hit 
renders the cell more advantageous. The third model is a combination of these two mod-
els, describing cancer as driven both by small events targeting driver genes and large CNAs 
changing gene balance across the genome.

WGD is an early and ongoing event in many cancers [24,25], and is associated with an 
altered selection landscape [26] and chromosomal instability (CIN) [27,28]. In this manu-
script, we focus on the increased CIN resulting from subsequent mitoses after a cell acquires 
WGD. Because all three models are defined upon the gene balance in a cell, a cell retains the 
same fitness immediately after WGD. However, we assume that the cell and its progeny have 
significantly higher CNA probabilities during division. Furthermore, each selection model is 
subject to viability checkpoints, which eliminate cells that exceed defined thresholds on driver 
mutation count, bin-level CN, average ploidy, or extent of nullisomy. S1 Notes describes the 
mathematical model in detail.

CINner is developed to efficiently simulate observed SNVs and CNAs in a tumor sample 
(Fig 1e). To optimize for computing memory and runtime, the genome is divided into bins 
of a fixed size, and the allele-specific bin-level copy number profile of each cell is tracked 
throughout tumor progression. Each new mutation is assigned a genomic location, and gets 
multiplied or deleted if the site is affected by later CNAs. Two observations are utilized to 
increase the efficiency of CINner. First, cells with the same phylogenetic origin share the 

homolog is misplaced between the two progeny cells. During a chromosome-arm missegregation, a homolog is torn between the progeny, with one cell 
gaining a random arm and the other cell losing that arm. Focal amplification and deletion target a random region on a random chromosome arm, and either 
doubles the CN across all bins in that region (amplification, yellow bins) or resets the CN with 0 (deletion, blue bins). Driver mutation does not affect the CN 
profiles, but one allele of a randomly selected driver gene is changed from wild-type to mutant in a cell (lightning symbol). (c and d) Two selection models 
included in CINner. Squares represent cells, profiles of which change according to CNAs and driver mutations. Circles in each cell represent its fitness 
(darker is fitter). (c) Selection model for chromosome arms. A bin’s total Copy Number is the sum of its CN across homologs. The selection rates, which are 
constant across cells, measure the total effect of genes on each arm (vertical solid lines represent centrosomes, separating arms). Arms dominated by Tumor 
Suppressor Genes (TSGs) have selection rates < 1 (blue), their losses increase the cell’s fitness and gains decrease it (e.g., missegregation of chromosome 1 in 
this example). The opposite holds true for arms with selection rates > 1 (green), which house Oncogenes (OGs), gains of which increase the cell’s fitness (e.g., 
missegregation of arm 3p)s WGD does not change the arm balance and therefore the cell’s fitness rate remains constant. (d) Selection model for driver genes. 
Each driver gene has a selection rate for its wild-type (WT) and mutant (MUT) alleles, which are constant across cells. The balance of all driver gene allele 
counts and their selection rates defines a cell’s fitness rate. A cell has higher fitness rate if a TSG (blue) is either mutated or lost, or an OG (green) is either 
mutated or gained. Here TP53 represents a TSG and MYC represents an OG. A third hybrid selection model is a combination of (c) and (d). All selection 
models are further subject to viability checkpoints. If a cell violates thresholds on nullisomy extent, maximum bin CN, driver counts, etc. then its fitness 
rate is zero and the cell eventually dies. (e) Left: schematics of the simulation algorithm, divided into four consecutive main steps. Right: data available to be 
computed in each step (see S1 Notes). CINner can complete prematurely if the later steps are not necessary, depending on the data requested by the user.

https://doi.org/10.1371/journal.pcbi.1012902.g001

https://doi.org/10.1371/journal.pcbi.1012902.g001
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same CN and mutational profiles, therefore they evolve similarly throughout time. Second, 
the information relevant for downstream analysis is restricted to only the sampled cells. 
Therefore, it is not necessary to simulate single cells in the whole population individually, 
and instead we focus on clones, defined as groups of cells that have identical CN and muta-
tional characteristics. The first step of CINner consists of simulating the evolution of clones in 
forward time. New clones are generated when CNAs or driver mutations occur, and the clone 
sizes change through time according to the branching process governing cell division and 
death. We use the tau-leaping algorithm [29] for efficiency, as the exact Gillespie algorithm 
[15] is time-consuming for cell populations of the typical size of tumors. In the second step, 
CINner samples cells from predefined time points. Next, it constructs the phylogeny for the 
sampled cells by using the “down-up-down” simulation technique [30]. In short, the sampled 
cell phylogeny is generated as a coalescent (cf. [31]), informed by the recorded clone-specific 
cell division counts throughout time from step 1. Finally, cell-to-cell variations due to neutral 
CNAs and passenger mutations are simulated on top of the phylogeny tree and trickle down 
to the sample observations. CINner is explained in more detail in S1 Notes.

The use of the “down-up-down” strategy and tau-leaping algorithm allows for significantly 
reduced runtime of CINner, compared to directly simulating the branching process for the 
whole population and then extracting the phylogeny only for the sampled cells. The run-
time of simulating the clonal evolution (step 1, Fig 1e) scales with the number of clones and 
the number of time steps. The clone count increases with higher CNA and driver mutation 
probabilities. The number of time steps increases inversely with the step size selected for the 
tau-leaping algorithm. Meanwhile, the computational cost of simulating the phylogeny (step 
3, Fig 1e) scales with the number of sampled cells, which is typically of magnitudes smaller 
than the population size.

We note that the data simulated in the forward and backward steps capture complementary 
views of cancer evolution. CINner’s first step simulates the whole population throughout time. 
The population at each time point is characterized by distinct co-existing clones, their CN and 
driver mutation profiles, and their cell counts. This information contains all clones that arise 
during the whole process, including those that become extinct or are rare at the final time and 
hence unrepresented in the sample taken in step 2. Therefore, the output data allows for the 
examination of the expansion and/or extinction of any given clone in the simulation. On the 
other hand, the sample phylogeny from step 3 in CINner captures the history of a subsample 
of cells taken at the final time point. It therefore represents information that is observable 
from a hypothetical tumor biopsy. The phylogeny depicts recent subclonal evolution, but 
may lack (a) a full view of the heterogeneity in the whole cell population, and (b) information 
about early population genetic processes, e.g., before the sample MRCA. Depending on the 
applications, the users may utilize the data from either step for their analyses.

Selection parameters calibrated for chromosome arms predict gene 
imbalance and prevalence of whole-genome duplication
We develop a parameter estimation program for the chromosome arm selection model (Fig 
1c), which employs the Approximate Bayesian Computation random forest (ABC-rf) method 
[32] (Fig 2a and S1 Notes). We find that simultaneous parameter inference for both selection 
parameters and CNA probabilities in bulk DNA sequencing data results in nonidentifiability 
issues. Previous works have observed around 1 9 10 3− × −  missegregations per division in can-
cer cell lines [33–35]. However, in CINner this figure can be explained by either (i) high CNA 
probabilities coupled with selection parameters close to 1, or (ii) low CNA probabilities and 
selection parameters farther from 1. We will examine this in more detail in the next section.
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Fig 2.  Results from fitting the chromosome arm selection model to CN data from PCAWG and TCGA. (a) Schematic for the inference 
and analysis of cancer type-specific chromosome-arm selection parameters. In the inference, selection rates are sampled from a prior dis-
tribution. CINner simulations are created for each parameter set, from which the gain/loss frequencies are computed across the genome. 
We then find the posterior distributions that match the frequencies observed in the data with Approximate Bayesian Computation. In 
CINner, gains of arms with selection rates > 1 are advantageous, similarly as losses of arms with selection rates < 1. Therefore, to analyze 
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In this section, we choose to study the selection parameters for each cancer type, and 
whether they indicate the tissue-specific selective pressure. Therefore, we fix the whole-
chromosome missegregation probability at a comparatively low rate of 5 10 5× −  for all cancer 
types, so it is easier to analyze the inferred selection parameters. Given a CN data cohort, we 
find fr

gain[ ]  and fr
loss[ ] , the frequencies of gain and loss for each chromosome arm. The ABC 

method then finds the posterior probability distributions for the arm selection parameters 
and the chromosome-arm missegregation probability that explain the observed gain and loss 
frequencies. We obtain a point estimate for each parameter by using its maximum a posteriori 
probability (MAP) estimate, which is the mode of the parameter’s posterior distribution [36]. 
Finally, we generate CINner simulations with this estimated parameter set for direct com-
parison against the CNA data. The estimated chromosome-arm missegregations appear to be 
similar across different tumor types, possibly as a result of the nonidentifiability (S1–S17 Figs). 
Therefore, we focus the analysis on the inferred selection parameters.

We first employ the parameter fitting routine to study distinct cancer types with available 
data from Pan-Cancer Analysis of Whole Genomes (PCAWG) [37]. Samples with whole-
genome duplication (WGD) have been shown to exhibit significantly different selection forces 
from non-WGD samples of the same cancer type, especially with respect to chromosome 
arm gains and losses [26]. Therefore, we limit the data to only non-WGD samples in each 
PCAWG data type for parameter calibration. We apply the parameter inference to 17 cancer 
types with n≥10  non-WGD samples. In the CINner framework, gains of a chromosome 
arm r with selection parameter sr �1  are selective, therefore sequenced samples exhibit high 
fr

gain[ ] . Conversely, chromosome arms with sr �1  exhibit high fr
loss[ ] . On the other hand, 

arms with low fr
gain[ ]  and fr

loss[ ]  do not frequently get altered copy number, so we assume 
that these arms are neutral. Therefore, we limit the inference only to chromosome arms with 
f fr

gain
r
loss[ ] [ ]− ≥0 1. , to mitigate the effects of neutral evolutionary noise.

Fig 2b presents the fitting results for glioblastoma samples (CNS-GBM). This cancer type 
has relatively few frequent CNAs, except for the combination of chromosome 7 gain and 
chromosome 10 loss [38], and gains of chromosomes 19 and 20 at lower frequencies [39]. 
Compared to CNS-GBM, ovarian adenocarcinoma (Ovary-AdenoCA) contains extensive 
CNAs shaped by multiple mutational processes [40], especially genomic loss-of-function 
events in BRCA1 and BRCA2 genes [41] (Fig 2c). Finally, breast adenocarcinoma (Breast-
AdenoCA) is also associated with high aneuploidy [3] (Fig 2d). For each cancer type, the gain/
loss frequencies produced from the simulator with fitted selection parameters closely resem-
ble the genomic CNA landscape from PCAWG. Additionally, the selection parameters for 
individual chromosome arms correlate strongly with their amplification or deletion propor-
tions (Fig 2e–g). Similarly, the inferred chromosome arm selection parameters for the other 

the results, we classify each arm as a GAIN arm if mean posterior selection rate > 1, and as a LOSS arm if mean posterior selection rate 
< 1. The inference result for each data cohort can then be summarized with the count and mean selection rate of GAIN and LOSS arms. 
Read S1 Notes for more information. (b–d) Comparison between gain/loss frequencies from the fitted model (top) and non-WGD samples 
in PCAWG (bottom) for the cancer types diffuse glioma in central nervous system (b; CNS-GBM, n= 34 ), ovary adenocarcinoma (c; 
Ovary-AdenoCA, n= 20 ) and breast adenocarcinoma (d; Breast-AdenoCA, n= 34 ). Spearman’s correlation coefficient rho between 
frequencies of gains (or losses) among all bins in PCAWG and simulations. (e–g) Correlation between inferred chromosome arm selection 
rates and amplification/deletion frequencies for individual chromosome arms in CNS-GBM (e), Ovary-AdenoCA (f) and Breast-AdenoCA 
(g). Linear regressions and p-values from Pearson correlation. (h–j) Correlation between WGD proportion and mean inverse selection 
rates of LOSS arms (h), and counts of GAIN arms (i) and LOSS arms (j) in each PCAWG cancer type. p-values from Spearman correlation 
between WGD proportion and each variable. (k and l) Fitted selection rates versus TCGA pan-cancer chromosome arm gain/loss fre-
quencies (k) and gene balance scores (l) (Davoli et al. 2013, n= 8207 ) [22]. The score Charm(TSG-OG) considers the gene imbalance 
between TSGs and OGs, and Charm(TSG-OG-Ess) additionally examines Essential genes. Linear regressions and p-values from Pearson 
correlation. Sample sizes for each cancer type are listed in S1 Table.

https://doi.org/10.1371/journal.pcbi.1012902.g002

https://doi.org/10.1371/journal.pcbi.1012902.g002
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14 cancer types lead to similar CNA landscapes to those from PCAWG (S1–S17 Figs). Overall, 
this demonstrates the model’s ability to uncover specific selection forces characteristic of par-
ticular cancers, regardless of the extent of aneuploidy or bias toward genomic gains or losses.

We then examine whether the estimated parameters are indicative of cancer properties, 
specifically the selection for whole-genome duplication (WGD). It occurs in about 30% of 
tumors and is associated with a poor prognosis, suggesting that it plays a crucial role in cancer 
development [42]. WGD is also linked with extensive and profound changes in the selective 
landscape, including heightened chromosomal instability [43,44], increased preference for 
losses over gains [45], and changes in co-occurrence and mutual exclusivity in aneuploidy 
patterns [26]. Because of WGD’s typical occurrence in initial stages of tumorigenesis and 
the many genomic changes it causes up to diagnosis [42], it is difficult to infer from DNA-
sequencing data the causes for selection of WGD in early cancer development. We investi-
gate whether the chromosome arm selection parameters inferred from CINner can predict 
tissue-specific WGD prevalence in PCAWG. We also explore which features correlate strongly 
with WGD proportion, which would imply contribution to increased fitness for WGD cells 
over the non-WGD population. For a given cancer type, we classify chromosome arms r with 
f fr

gain
r
loss[ ] [ ]− ≥0 1.  with inferred selection parameter sr >1  as GAIN arms, and those with 

sr <1  as LOSS arms. Each cancer type is then characterized by the counts of GAIN and LOSS 
arms, together with their respective mean selection parameters.

One hypothesis for the prevalence of WGD in cancer is that WGD provides redundant 
genes to buffer the deleterious effects of nullisomy [44]. The risk of nullisomy increases if 
the CNA probabilities are high or if there exist LOSS arms with selection parameters s�1
. Because our missegregation probabilities are similar across tissue types due to nonidentifi-
ability, the hypothesis predicts that WGD is more frequently observed in cancers with highly 
selective LOSS arms. The correlation between WGD prevalence and mean selection param-
eters in LOSS arms inferred from CINner across cancer groups confirms this (Fig 2h). Our 
results therefore are in agreement with the assumption that WGD helps cancer cells mitigate 
the risk of nullisomy from repeated losses in specific genomic regions [45,46]. On the other 
hand, the counts of GAIN and LOSS arms indicate the proportion of the genome that is under 
selection for CNAs. The correlation between WGD proportion and the counts of either GAIN 
or LOSS arms (Fig 2i and 2j) is compatible with evidence that WGD is associated with chro-
mosomal instability in cancer [44]. In conclusion, we have shown that the selective landscapes 
uncovered by CINner can predict tissue-specific WGD prevalence, indicating that the inferred 
selection parameters are biologically meaningful. Moreover, the cancer types with either (i) 
many GAIN and LOSS chromosome arms, or (ii) some LOSS arms with high selection param-
eters, are more likely to harbor WGD, indicating that selection for WGD in cancer develop-
ment is driven by its role in helping tumors avoid nullisomy and tolerate aneuploidy.

Finally, we investigate if our classification of chromosome arms as GAIN or LOSS, and 
their selection parameters calibrated by the fitting routine, can reveal the genetic imbalances 
within the arms. We calibrate the model on frequencies of chromosome arm gains and losses 
from the pan-cancer data in The Cancer Genome Atlas (TCGA) [22] (S18 Fig). Similar to the 
fitting results for PCAWG cancer types, there is a strong correlation between estimated arm 
selection parameters and the frequencies of either amplification or deletion (Fig 2k). We then 
compare the fitted selection parameters to chromosome arm scores in [22]. For a given chro-
mosome arm, the Charm (TSG, OG) score accounts for the count and potency of tumor sup-
pressor genes (TSGs) and oncogenes (OGs). The score is higher for arms with higher count or 
increased potency of TSGs, and lower for arms more abundant with OGs. The second score 
Charm (TSG, OG, Ess) additionally considers essential genes (Ess), in the same manner as 
OGs. The selection parameters derived from our model correlate well with both scores (Fig 
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2l), and the negative correlation reflects the selection model (Fig 1c). Chromosome arms with 
selection parameters s�1 are under intense selective pressure to get amplified, indicating 
that they harbor many important OGs, hence low Charm(TSG,OG) or Charm (TSG, OG, 
Ess), and the opposite holds for arms with s�1 . The correlation is stronger for Charm (TSG, 
OG, Ess) than Charm(TSG,OG), possibly signaling the relevance of essential genes in shaping 
the selective landscape during cancer evolution. Overall, we have shown that the chromosome 
arm selection parameters uncovered in our model are biologically significant, as they reflect 
the bias in distribution and potency toward either tumor suppressor genes or oncogenes and 
essential genes. Therefore, the model can play a role in estimating the driver gene landscape in 
specific cancer types. Driver genes are largely identified through their mutation frequencies, 
therefore the cohort size limits the sensitivity to which rare driver genes can be detected [47]. 
However, the selection parameters fitted in our model are an estimate of the combined effects 
of genes located on the same chromosome arm, including both commonly altered genes and 
those with minor contributions to tumor growth. Importantly, the selection parameter fitting 
routine only requires a small cohort of cancer samples (S1 Table).

Impact of selection, copy number aberration mechanisms and growth 
dynamics in the chromosome arm selection model
CINner provides a framework to study different families of models and analyze the impact of 
model parameters on observable statistics of individual cancer samples. We have shown that 
specific cancer types exhibit a wide discrepancy in chromosome arm driver count, the potency 
of these arms, and the distribution of GAIN and LOSS arms among them, as has been previ-
ously reported extensively [9,20,22,26,37,48]. We now analyze how these statistics change with 
different selection parameters in CINner. In this parameter study, the selection parameters 
calibrated for the TCGA pan-cancer dataset (Figs 2k and l and S18) are denoted as scale ×1
. We then study the sample statistics when GAIN or LOSS chromosome arms increase their 
selection parameters (Fig 3a–c). In CINner’s framework, amplifications of GAIN arms are 
more advantageous as the selection parameters of these arms increase. During simulated evo-
lution, cancer cells with these amplifications acquire higher fitness rates and are more likely to 
expand. The increased preference for gains over losses hence leads to higher average ploidy in 
the sample (Fig 3b). Although the samples contain more clonal gains, the counts of subclonal 
gains and losses decrease, because of shorter elapsed time from Most Recent Common Ances-
tor (MRCA) to when the sample is taken (Fig 3c). Interestingly, the count of clonal losses also 
increases slightly, as deletions behave as hitchhikers to amplification drivers. Conversely, as 
LOSS chromosome arms are more selective, the clonal loss count increases significantly and 
the clonal gain count increases moderately, while the subclonal gain and loss counts decrease, 
resulting in lower average sample ploidy (Figs 3b and S19d). In both cases, the heightened 
competition means that subclones either expand quickly or become extinct, therefore the 
tumor sample exhibits fewer subclones, lower Shannon diversity index, and more recent Most 
Recent Common Ancestor (MRCA) (Figs 3a, 3c, and S19).

Another area of interest is the effects associated with variable CNA probabilities on sample 
statistics. In particular, we study how different probabilities of missegregation impact cell 
fitness and tumor clonality (Figs 3d–f and S20). Although increasing selection parameters lead 
to heightened competition and therefore fewer subclones, a higher missegregation probabil-
ity increases subclonal diversity and results in a larger Shannon diversity index (Figs 3d and 
S20a). Because of the enhanced diversity, subclones share more clonal gains and losses, and 
they also harbor more subclonal missegregations (Fig 3f). Because there is no change in the 
selection landscape, the MRCA age does not change appreciably. As a consequence, the ratio 
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Fig 3.  Analysis of parameters in the chromosome arm selection model. (a and b) Effects of selection rates for GAIN and LOSS chromosome arms on 
average Shannon diversity index (a) and average ploidy in each sample (b). (c) MRCA age and average missegregation counts, grouped based on clonal-
ity (clonal/subclonal) and type (gain/loss), as selection rates for GAIN arms increase (variables correspond to highlighted segment in (b)). MRCA age is 
computed as fraction over time back to when simulation starts. MRCA age =−1 if the sampled cell phylogeny tree starts branching at the beginning of 
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of clonal to subclonal gain and loss counts remains constant as probability of missegregation 
varies (Fig 3e). This contrasts with increasing selection parameters, which likewise increases 
total missegregation count in the sample but with a higher bias toward clonal events. An 
important aspect to consider is that the total CNA count is the primary measure of CIN that 
can be obtained from bulk DNA-sequencing samples. However, as demonstrated in this study 
for missegregations, these counts can be explained by a spectrum of parameters in CINner, 
ranging from high CNA probabilities with low selective pressure (bottom right corner in Fig 
3e) to high selection parameters coupled with low CNA occurrences (top left corner). As dis-
cussed in the previous section, it is therefore challenging to estimate both CNA probabilities 
and selection parameters with bulk DNA data.

Finally, we investigate how different growth patterns impact the cancer sample statistics, 
taking advantage of the model’s ability to incorporate the dynamics of expected population 
size as input (Fig 3g–i). The cell turnover rate is unchanged under different tumor dynamics, 
hence the distribution of cell lifespan is constant. The sample size is also fixed at 1,000 cells 
for each parameter set. Despite this, as the population increases in size, the sampled cells 
both share more clonal missegregations and accrue more subclonal events (Fig 3i), leading 
to higher Shannon diversity index (Fig 3h). We also study ten different tumor growth mod-
els, ranging from constant to exponential with increasing growth rates (Fig 3g). In tumors 
growing at a low rate, the competition for carrying capacity is more intense. In contrast, 
higher exponential growth rate represents faster growing tumors, in which cells do not have to 
compete as much for space. As a result, even subclones with low fitness can expand, leading to 
higher clone count and Shannon diversity index (Figs 3h and S21).

In conclusion, the different components of the model, ranging from CNA mechanisms to 
tumor dynamics to selection model, have distinct effects on common cancer sample statistics. 
These signals are important to analyze, as they directly affect the process of model calibration. 
When using CINner to estimate parameters for specific datasets, it is crucial to find values for 
model constants that conform to the corresponding tissue type and tumor growth.

The role of whole-genome duplication in promoting chromosomal 
instability
In previous sections, we estimated cancer type-specific selection parameters and missegregation 
probabilities in cell populations without whole-genome duplication (WGD) (Fig 2). WGD is a 
common and early event in many cancers [24], and is associated with an altered selection land-
scape [26] and heightened chromosomal instability (CIN) [27,28]. As has been observed in our 
parameter study, increasing CNA probabilities leads to higher heterogeneity, and the increased 
clonal competition results in greater tumor fitness (Fig 3d–f). In this section, we utilize CINner 
to measure the CIN level associated with WGD in a cancer-specific context.

The WGD proportion varies substantially among different cancers (Fig 2h–j). Moreover, 
the fraction of genome altered (FGA) among WGD and non-WGD samples in PCAWG fur-
ther varies between cancer types (Fig 4a). For instance, although WGD samples of squamous 

the simulation. MRCA age → 0  as the MRCA is closer to sampling time. (d and e) Effects of probability of missegregation and chromosome-arm selection 
rates on clone count (d) and average count of clonal and subclonal missegregations (e) (size of circles indicates the total missegregation counts). (f) MRCA 
age and missegregation counts as probability of missegregation increases (variables correspond to highlighted segment in (e)). (g) Different patterns of 
growth mode, ranging from constant (mode 1) to exponential with high growth rate (mode 10). (h) Effect of growth mode and average cell count on aver-
age Shannon diversity index. (i) MRCA age and missegregation counts as average cell count increases (variables correspond to highlighted segment in (h)). 
1,000 simulations are created for every parameter combination.

https://doi.org/10.1371/journal.pcbi.1012902.g003

https://doi.org/10.1371/journal.pcbi.1012902.g003


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012902  April 3, 2025 13 / 33

PLOS Computational Biology CINner: Modeling and simulation of CIN in cancer at single-cell resolution

Fig 4.  Results from fitting WGD parameters to CN data from PCAWG. (a) Distribution of Fraction of Genome Altered (FGA) in PCAWG by 
cancer type and WGD status. (b and c) Impact of varying WGD probability and WGD-aneuploidy rate on WGD proportion (b) and WGD FGA 
difference (c) in simulated samples. WGD FGA difference is defined as mean (FGA|WGD) - mean (FGA|non-WGD). 1,000 simulations are cre-
ated for every parameter combination. (d) Comparison between WGD proportion and WGD FGA difference from the fitted model (triangle) and 
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cell lung carcinoma (Lung-SCC) exhibit highly altered genomes, the FGA of these samples is 
not much higher compared to non-WGD samples. In contrast, kidney renal cell carcinoma 
(Kidney-RCC) has few genomic alterations and therefore low FGA in non-WGD samples, 
however the WGD tumors exhibit high FGA, indicating significantly increased CIN level 
associated with WGD. We already captured the genome alteration landscape in non-WGD 
cancers (Fig 2). Therefore, in order to study the WGD-associated CIN, we characterize each 
PCAWG cancer type by two statistics: WGD proportion, and WGD FGA difference (defined 
as the mean difference in FGA between WGD and non-WGD tumors).

We define two parameters in CINner: the probability of WGD in each cell division, and 
WGD-aneuploidy rate, defined as the ratio of missegregation probabilities between WGD 
cells and non-WGD cells. We then study the changes in WGD statistics as these parameters 
vary, using the selection parameters fitted for the pan-cancer TCGA model (Fig 2k, 2l, and 
S18). As can be expected, increasing WGD probability leads to higher WGD proportion 
within the simulated samples (Fig 4b), however, the FGA difference between WGD and non-
WGD samples is unchanged (Fig 4c). On the other hand, increasing WGD-aneuploidy rate 
raises the FGA difference, as WGD-cells accumulate missegregations at a higher rate. The 
higher heterogeneity within WGD cells also leads to emergence of karyotypes with higher 
fitness compared to non-WGD cells, ultimately resulting in higher WGD proportion (Fig 4b), 
similar to our observations from varying missegregation probabilities (Fig 3d–f).

We now infer the WGD probability and WGD-aneuploidy rate for distinct cancer types 
from the WGD proportion and FGA difference in each PCAWG cohort. For each cancer 
type, we assume the chromosome-arm selection parameters and missegregation probabili-
ties inferred previously (Fig 2), then infer the WGD probability and WGD-aneuploidy rate 
with ABC-rf. To avoid overfitting, we limit the inference to 14 cancer types with at least 10 
non-WGD samples and WGD proportion >10%  in PCAWG. The posterior probabilities 
are largely unimodal (S22 and S23 Figs), indicating low uncertainty in the ABC inference. We 
simulated the WGD proportion and FGA difference using the modes for each inferred param-
eter, and the statistics are consistent with each PCAWG cohort (Fig 4d).

The comparison of inferred parameters between different cancer types reveals that the 
WGD probability per cell division and WGD-aneuploidy rate are negatively correlated 
(Fig 4e). One possible explanation is that there is a limit to the level of aneuploidy that can 
be tolerated in cancer cells, even in the presence of WGD. In cancer types with high WGD 
probability, there is a larger time span from WGD to diagnosis, as the event would frequently 
occur early in tumorigenesis. This results in increased aneuploidy, but also a large number of 
extreme karyotypes that are unviable. Therefore, the observed WGD samples exhibit much 
lower FGA as compared to expectations from CINner. Indeed, the FGA in WGD samples 
are more uniform across cancer types compared to the non-WGD samples (Fig 4a). Another 
explanation is that the increased FGA in WGD samples results from increased likelihood of 
multipolar divisions [49]. The resulting progeny exhibit highly aneuploid genomes, and most 
are nonviable due to nullisomy. However, it is possible that rare surviving cells are more selec-
tively advantageous than diploid cells, and expand across the tumor. Under this assumption, 
the WGD-aneuploidy rate would be lower, as the WGD cells would already have markedly 
higher FGA after multipolar divisions.

We also compare the inferred probability of WGD against the average fraction of mono-
somy in diploid samples from PCAWG. Under the hypothesis that WGD helps cancer escape 

PCAWG (circle). Dotted bars represent ranges of each statistic from 10,000 bootstrap samples. (e) Comparison between inferred WGD probabil-
ity (in logscale) and WGD-aneuploidy rate for each cancer type. Sample sizes for each cancer type are listed in S1 Table.

https://doi.org/10.1371/journal.pcbi.1012902.g004

https://doi.org/10.1371/journal.pcbi.1012902.g004
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Fig 5.  Results from fitting the driver gene selection model to the CLLE-ES cohort in PCAWG (n= 95) . (a) Ratios of focal deletion lengths over cor-
responding chromosome arm lengths are fitted with a Beta distribution. (b) Comparison between mutation/gain/loss frequencies among driver genes from 
the fitted model (bars) and PCAWG (circles). Error bars represent the standard deviations from 10,000 bootstrap samples. (c) Correlation between inferred 
selection rates and mutation frequencies for individual driver genes. Linear regressions and p-value from Pearson correlation.

https://doi.org/10.1371/journal.pcbi.1012902.g005

https://doi.org/10.1371/journal.pcbi.1012902.g005
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nullisomy, we would expect a higher WGD probability in cancer types that have higher mono-
somy fraction in diploid samples. The comparison is unclear (S23g and h Fig). One potential 
reason is that there are few samples for certain cancer types in PCAWG. The approach that we 
employ necessitates further subdividing the samples based on WGD status, which could ren-
der the statistics too prone to noise. However, the three cancer types with highest monosomy 
fraction, namely cervical squamous cell carcinoma (Cervix-SCC), breast and lung adenocarci-
nomas (Breast-AdenoCA, Lung-AdenoCA), have medium to high inferred WGD probability, 
compared to other cancer types. This might indicate that WGD indeed provides cancer a 
means to escape from nullisomy.

Inferring selection parameters for driver genes in chromosomally stable 
tumors
Thus far we have examined the implementation of CINner in elucidating the selective roles of 
different CNA mechanisms, such as whole-chromosome and chromosome-arm missegrega-
tions and whole-genome duplication. Although these CNAs are frequently observed in cancer, 
many blood cancers and certain solid tumors are not associated with large-scale aneuploidies 
[9]. Here, we explore potential applications for CINner in analyzing such cancer types.

As a case study, we investigate the CLLE-ES cohort in PCAWG, consisting of chronic 
lymphocytic leukemia samples. The samples are largely diploid in general, therefore previ-
ously excluded in our chromosomal CNA study (Fig 2). We hypothesize that the cancer type is 
driven mostly by mutations and focal gains and losses, suggesting that our selection model for 
driver genes is appropriate (Fig 1d).

The list of driver genes is derived from tabulating all genes that are either mutated or 
impacted by CNAs in at least one CLLE-ES sample. Our selection model requires that each 
driver gene is assigned as either TSG or oncogene, under the assumption that losses of TSGs 
and gains of oncogenes are associated with increased fitness during tumorigenesis. There-
fore, the driver genes are labeled as TSG or oncogene depending on whether the loss or gain 
frequency in the CLLE-ES cohort is higher, respectively. If the frequencies are equal, the driver 
gene role is taken from Cancer Gene Census [50]. We restrict the driver gene list to those that 
are listed in Cancer Gene Census, located on autosomes, and can be assigned a selective role.

We then model the lengths of focal amplification and deletion events separately, under the 
assumption that the ratio of a focal event length over the chromosome-arm length follows 
the Beta distribution (Fig 5a). Because none of the driver genes in our list is affected by 
focal amplifications (Fig 5b), we limit the parameter inference to driver mutation rate, focal 
deletion probability, and driver gene selection parameters. Similar to the CNA probability 
inference problem where the confounding effect of missegregation probabilities and  
chromosome-arm selection parameters results in nonidentifiability, here we fix the driver 
mutation rate and infer the other parameters relative to this value.

All posterior distributions of the driver gene selection parameters are more concentrated 
than their prior distributions and are unimodal (S24 Fig), confirming our ability to estimate 
the selection parameters effectively. Choosing the mode from each parameter’s posterior 
distribution, we compare the driver gene event frequencies from CINner against the PCAWG 
data (Fig 5b). The mutation frequencies from CINner recover the signals from data. More-
over, the gene loss frequencies are largely in agreement with PCAWG observations. The 
inferred selection parameters exhibit a linear relationship with the mutation frequencies (Fig 
5c), similar to the correlation between CINner-inferred chromosome-arm selection param-
eters and frequencies of amplifications and deletions for cancer types driven by CNAs (Fig 
2e–g).
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We note that currently the selection model is based on several simplifying assumptions. 
First, we assume haploinsufficiency for TSGs, i.e., cancer fitness increases with each addi-
tional allele inactivated via mutation or CN loss. For some driver genes, inactivation has been 
observed to require functional loss of both alleles (two-hit paradigm), and for yet other driver 
genes, the loss of one allele induces cancer but complete functional loss of the gene is toxic 
[23]. Second, our fitness formula is multiplicative, wherein each additional functional loss of a 
TSG or functional gain of an oncogene increases cell fitness by the same factor, dictated by the 
gene’s selection parameter. Third, in some cancer types, the fitness associated with a de novo 
gene alteration depends on the genomic landscape, indicating the importance of the order 
in which driver gene mutations and CNAs occur. This phenomenon is not included in our 
selection model. Although these assumptions greatly reduce the complexity of the parameter 
inference while still largely capturing the gene alteration patterns in CLLE-ES, applications in 
other data cohorts and cancer types might necessitate a more involved selection model.

Discussion
Cancer is characterized by a multistep process resulting in the reprogramming of key cellu-
lar components [51]. The genomic alterations that drive tumor heterogeneity and evolution 
range in extent and potency, from point mutations and small indels [52], to copy number 
aberrations and structural variants affecting one or multiple chromosomes simultaneously 
[43,51–53]. The occurrence rates of these distinct mutational processes and how they impact 
the selection landscape are highly context-dependent [43]. Loss or mutation of TP53 and 
BRCA1/2 leads to progressive increases in CNA rates and therefore tumor heterogeneity [53]. 
WGD likewise propagates chromosomal instability (CIN) [54], yet tolerance of WGD itself 
often also requires functional loss of TP53 [46,55]. Different alleles of a TSG can be deacti-
vated via mutation, deletion [56], or copy-neutral loss of heterozygosity [57]. However, the 
same mechanisms can constrain each other, as shown for example by MDM4 amplifications in 
the 1q arm, which are known to inhibit p53 signaling and accelerate tumor progression [58].

Because the effects of CNAs on cancer cell fitness depend heavily on context, it is challeng-
ing to fully understand the functional role of chromosomal instability from genomic measure-
ments alone. Mathematical modeling can help distinguish between the effects of selection and 
neutral drift in CIN evolution, reveal how preference for specific karyotypes shapes cancer 
evolution, and forecast clonal dynamics [16]. Moreover, if both the occurrence rate and 
selection parameter of a CNA can be ascertained, we can infer the allele age and reconstruct 
the sample coalescence [59], which can offer valuable information in diagnosis and treatment 
selection.

To provide a comprehensive picture of how CIN impacts tumor progression, a model must 
possess two important features. First, it should account for the opposing forces of diversity 
and selection. Second, it should allow for the coexistence and interaction of different muta-
tion and CNA mechanisms. Most models so far have only addressed some of these aspects. 
Early works studied chromosome copy number changes without selection, only assuming 
that nullisomic karyotypes were nonviable [60,61]. A recent model defined different phases 
of CIN in tumor growth, using breakpoint tally to measure subclone fitness [62]. Since copy 
number is not explicitly defined, this approach seems unsuitable for analyzing selection for 
optimal karyotypes. Another CIN study [63] employs CINSignatureGenomeSimulation 
[64], an algorithm to simulate the effects of different copy number signatures on the cancer 
genome, without direct modeling of selection. Other methods first generate a cell genealogy, 
then simulate CNAs along the branches [65,66]. However, the CNAs in this approach do not 
affect the phylogeny tree, therefore karyotype selection is not explicitly depicted. Some recent 
studies model the effects of selection and missegregation on subclonal copy numbers [18,67], 
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also incorporating point mutations [13] or WGD [28,68]. Nevertheless, many of these models 
focus only on the average ploidy and do not consider chromosome-specific CN [13,28,67]. 
In contrast, two studies directly integrate chromosomal selection parameters and study the 
resulting CN trajectories [18,68]. They employ existing chromosomal selection parameters 
defined from counts and potencies of OGs and TSGs from pan-cancer studies [22], to uncover 
the prevalent karyotypic trajectories during tumorigenesis. This seems to be the most prom-
ising approach to study the role of heterogeneity and selection in cancer on the copy number 
level. However, a potential drawback is that identification of cancer driver genes is nontrivial 
and its sensitivity depends on the sample size as well as the gene’s mutation frequency, among 
other factors [69]. Therefore, although defining selection parameters based on known OGs 
and TSGs can give accurate results in a pan-cancer context, the approach seems to have lim-
ited applicability for studies of specific cancer types and datasets.

We present CINner, a model for simulating CNA mechanisms and selection in tumor evolu-
tion. It can accommodate various genomic events ranging in extent and impact, from point muta-
tions to WGD. CINner uses several numerical techniques to reduce the memory and computing 
requirements of simulating whole genomes in large cancer populations. We use CINner to find 
chromosome-arm selection parameters from diploid PCAWG samples. The CN profiles simu-
lated with the inferred parameters match the observed cancer-specific aneuploidy patterns. The 
estimated selection parameters predict WGD prevalence and correlate with driver gene count and 
potency in pan-cancer TCGA data. These signals indicate that the selection parameters inferred 
from CINner reflect the oncogenic effects of genes on specific genomic regions. Therefore, CINner 
can play an important role in modeling rare cancers, where driver gene identification is limited 
due to small sample size and low gene alteration frequencies. For these cancer types, we can instead 
infer the chromosome arm selection parameters with significantly fewer samples (Figs 2b–d and 
S1–S17). Each arm’s selection parameter can then serve as an indicator for the combined impact 
of driver genes located on it. We also perform parameter analysis studies to quantify the effects of 
CNA probabilities, selection parameters, tissue cell count and tumor growth dynamics on CIN-
ner statistics. Finally, we apply CINner to cancers driven mainly by driver gene changes, such as 
CLLE-ES in PCAWG. In short, CINner is capable of modeling both small alterations impacting 
important genes and large-scale CNAs during tumor development.

An interesting finding from our parameter inference is that the WGD prevalence of a 
cancer type is connected to its chromosomal selection parameters in the diploid setting. This 
provides some insights into why WGD is a common early event in tumors, despite strong 
negative selection in normal tissues. In particular, WGD proportion correlates with higher 
selection parameters of TSG-acting chromosome arms (Fig 2h). As deletions of these arms are 
strongly selective, the cancer cells gradually lose copies due to missegregations, thereby risking 
the toxic effect of nullisomy. WGD could help alleviate this risk by raising those chromosome 
copy numbers above 1. Another explanation is that, because of the increased ploidy level, tet-
raploid cells can have repeated losses of a chromosome, resulting in higher impact on the gene 
balance. The WGD proportion also correlates strongly with the count of chromosome arms 
acting as either TSGs or oncogenes (Fig 2i and j). This could be because different cancer and 
tissue types have different levels of tolerance for aneuploidy and WGD. Alternatively, WGD 
has been shown to promote chromosomal instability [70]. The tetraploid cells, therefore, can 
explore the aneuploidy landscape and increase their fitness at a faster rate than diploid cells.

Although CINner has the power to study clonal dynamics at the single-cell level, the 
parameters were estimated by comparing pseudo-bulk simulations to bulk DNA sequencing 
data. This is to take advantage of the large sample sizes available with PCAWG and other 
cancer studies, to reduce the risk of overfitting. However, as shown in our parameter studies 
(Fig 3e), the chromosome gain and loss frequencies in bulk samples are similarly impacted 
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by CNA probabilities and selection parameters. This makes it challenging to infer both CNA 
probabilities and selection parameters simultaneously. Therefore, in this work, we fix the 
missegregation probabilities and focus on finding cancer-specific selection parameters.

Recently, technological advances in single-cell DNA sequencing have led to better resolu-
tion in capturing genomic data, and have demonstrated that tumors exhibit different levels 
of heterogeneity and chromosomal instability [53,62,71,72]. Our parameter studies show 
that single-cell statistics have different trends under variable CNA probabilities and selection 
parameters in CINner (Fig 3d–f). While higher missegregation probabilities result in increas-
ing aneuploidy and sample diversity, higher selection parameters increase aneuploidy but 
decrease clone count, as a result of heightened subclonal competition. Recently, we studied 
the application of CINner to single-cell data in a synthetic setting [73]. We considered a wide 
range of statistics based on observed CN profiles and inferred phylogeny trees from single-cell 
data. We found that the ABC framework can recover accurate posterior distributions not only 
for chromosome-specific selection parameters but also missegregation probabilities. We plan 
to combine this inference framework with CINner simulations to analyze currently available 
single-cell data [25,53,72]. As single-cell data increases in sample size and cell count, CINner 
can be implemented to estimate both the occurrence rate and fitness impact of different CNA 
mechanisms, circumventing the nonidentifiability issues in bulk data.

CINner’s capabilities are compared against previous algorithms in S2 Table. Although CINner 
provides the framework to model, simulate and infer parameters from cancer type-specific data 
for a wide range of CNA mechanisms, there are more CIN processes that will benefit from future 
works. Chromosomal rearrangements, whether in specific loci or in chromoplexy and chromo-
thripsis events, have been frequently observed across different cancers [37,74]. However, there is a 
lack of mathematical models for the evolution of cells resulting from these events during tumor-
igenesis. This is likely because defining the fitness rates for these cells is particularly challenging, 
given the large number of possible genomic configurations and the lack of understanding how the 
relocated genes impact cell selection. Another potential area for modeling is how the amplifica-
tions and deletions of specific alleles might impact the selection landscape differently.

In conclusion, we have shown that CINner offers a comprehensive framework to analyze the 
interplay between selection and distinct genomic alteration mechanisms. CINner can simulate 
individual cells and clones in a sample, making it adaptable for DNA data ranging from single-
cell to bulk level. Its flexibility can accommodate data from different DNA-seq technologies, 
including targeted sequencing [75,76], and enable incorporation of new CNA mechanisms or 
point mutations [77]. We envision that with the advent of large genomic studies using both bulk 
and single-cell approaches, CINner will enable accurate parameterization of cancer evolution.

Methods

Characterization of cells and clones in CINner
In CINner, the genome is divided into bins of equal length and we assume each bin in each 
cell has one allele configuration. Let N be the chromosome count, L be the length of each bin 
and M be the number of bins spanning the whole genome. Let Mi  be the bin count in chro-
mosome i, whose centromere is in bin Ci . We then have M M=∑

i
i  and L M⋅∑

i
i  is the total 

length of the genome. For typical single-cell data, N = 24 , L= 500 000,  bp and M= 6206 . 
The copy number (CN) information of a cell is then characterized by:

•	 J ii : , ,= …{ }1 N  is the global CN count vector, where Ji  is the number of strands of chro-
mosome i. Ji  changes if the cell gains or loses chromosome strands, e.g., via Whole Genome 
Duplication or chromosome missegregations.
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•	 K i j Ji j i, : , , ; , ,= … = …{ }1 1N  stores the local CN counts, where Ki j
i

, ∈N
M  is a vector of 

CN in each bin for strand j of chromosome i. The entry K li j, ( )  can increase or decrease if 
the cell undergoes amplifications or deletions affecting the bin l.

For a diploid cell, Ji = 2  and Ki j, , ,= …( )1 1  in autosomes.
Given the CN set up, every mutation in the cell is assigned an address a a a a1 2 3 4, , ,( ) , where

•	 a1 1∈ …{ }, ,N  denotes the chromosome

•	 a Ja2 1
1

∈ …{ }, ,  denotes the homolog

•	 a a3 1
1

∈ …{ }, ,M  denotes the bin along the homolog

•	 a K aa a4 31
1 2

∈ … ( ){ }, , ,  denotes the CN unit in the bin

A cell k is characterized by its CN profile J Ki
k

i j
k[ ] [ ]{ } { }( ), ,  and/or driver mutations

 a a a az z z z

z n k1 2 3 4 1
, , ,

, ,
( ){ }

= … [ ] , where n k[ ]  is the total number of driver mutations that it has 
accumulated.

Selection models
Given the profile of a cell k, we now define its fitness sk . We explore three different models, of 
selection for chromosome arms, or driver mutations, or both. Each selection model is further 
subject to viability checkpoints.

Selection model for chromosome arms.  In this model, we assume a library of 
chromosome arms 1 1 2 2p q p q, , , ,…{ } , where each chromosome arm r has selection rate 
λr ∈ ∞( )0,  and spans from bin la

r[ ]  to lb
r[ ] . Given a cell k with CN profile J Ki

k
i j
k[ ] [ ]{ } { }( ), , , we 

first find its ploidy:

c
Kk i j i j

k
[ ]

[ ]

=
∑ , ,

M
, rounded to nearest integer and the CN of each arm r on chromosome ir :

 c
K l

l lr
k j l l l i j

k

b
r

a
r

a
r

b
r r[ ] = …

[ ]

[ ] [ ]
=
∑ ( )

− +

[ ] [ ]; , , ,

1
, rounded to nearest integer.

The cell’s fitness rate is then

	 sk r
c cr
k k

=∏
[ ] [ ]
λ / 	

Cells with gains of arms r where λr >1 or losses of arms r where λr <1 have increased fitness 
rates and therefore will expand. Conversely, losses of arms r with λr >1 or gains of arms r 
with λr <1 decrease the cells’ fitness.

Selection model for driver mutations.  This selection model assumes a library of driver 
genes for a specific cancer type. Each driver gene d is located at bin a d

3
[ ]  on chromosome a d

1
[ ]  

and has selection rate λd ∈ ∞( )1, , which varies for different genes. Based on the gene’s specific 
role in the cancer type, we define its wild-type (WT) allele’s selection rate λd WT−  and mutant 
allele’s selection rate λd MUT− :

•	 If driver gene d behaves as an oncogene (OG), then

	 λ λd WT d− = 	

	 λ λd MUT d− = 2 	

•  If driver gene d behaves as a Tumor Suppressor Gene (TSG), then
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	 λ λd WT d− =1/ 	

	 λd MUT− =1 	

Given a cell k, from its CN and driver mutation profiles, CINner computes the CN for each 
driver gene. Specifically, let nd WT

k
−
[ ]  and nd MUT

k
−
[ ]  be the numbers of WT and mutant alleles of 

driver gene d, respectively. The cell’s fitness rate is then

	 sk d WT
n c

d MUT
n cd WT

k k
d MUT
k k

=∏ ⋅−
⋅

−
⋅−

[ ] [ ]
−
[ ] [ ]

λ λ2 2/ / 	

The formulae for driver gene-specific selection rates are based on some general assumptions 
about how cell fitness is affected by CNA and mutation events targeting individual driver 
genes:

i)	 WT alleles of oncogenes are less selective than mutant alleles which confer gains of 
function.

ii)	Furthermore, amplifications of both mutant and WT oncogene alleles are selective.
iii)	Mutations causing loss of function in TSGs are more selective than WT alleles.
iv)	Deletions of TSGs are also selective.
v)	 However, once TSG alleles lose their function, they become neutral and their amplifica-

tions or deletions do not impact cell fitness.

Hybrid selection model for chromosome arms and driver mutations.  The cell’s 
fitness rate in this model is the product of fitness rates defined in the previous two sections. 
Therefore, cell’s fitness depends both on CNA events affecting whole chromosomes, 
chromosome arms or genomes, and point events targeting driver genes.

Viability checkpoints.  We include conditions for cell viabilities. If a cell k violates any of 
these conditions, then its selection rate sk  becomes 0 and the cell will die:

•	 Average ploidy: c k[ ] ≤ploidymax

•	 Highest bin CN: max ,l i j
kK l[ ] ( )≤CNmax

•	 Highest normalized bin CN: max ,
l

i j
k

k

K l

c

[ ]

[ ]

( )
≤CNmax

nor

•	 Nullisomy bin count: ∑ ≤
∑ ( )=[ ]1

0l K li j
k: ,

nullisomymax

•	 Count of distinct mutated drivers: ∑ ≤
− >1 0d nd MUT: drivermax

•	 Count of WGD ≤WGDmax

Cell evolution as a birth-death process
Cells in the population follow a birth-death process, with two properties defining a given cell k:

•	 The lifespan of the cell is exponentially distributed with rate λk , after which it either divides 
or dies. We assume λ λk =  is constant and equal to the turn-over rate of the cells, estimated 
from the literature.

•	 The cell divides with probability pk
div  and dies with probability 1− pk

div . If the cell divides, 
CNA and/or driver mutation events occur at predefined probabilities, in which case the 
profiles of the progeny cells are updated accordingly (see Section 1.3–1.4 in S1 Notes for 
details).
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The division probability for cell k with fitness rate sk  at time t is:

	 p t g t f sk
div

k( )= ( )⋅ ( ) 	

where g t( )  is a negative feedback loop ensuring that the current total cell count P t( )  follows 
a predefined population dynamics P t( )  observed from either the data or the literature:

	 g t
P t

P t P t
( )=

( )
( )+ ( )

	

and f sk( )  models the selection for the fittest cells:

	 f s
s P t

sk
k

k P t k

( )=
⋅ ( )

∑ ′ ′= … ( )1, ,

	

CINner’s simulation algorithm
At initial time t0 , a CINner simulation starts with N0  clones. Each clone n0  consists of N n0[ ]  
cells with CN profile J Ki

n
i j
n0 0[ ] [ ]{ } { }( ), ,  and/or driver mutations a a a az z z z

z n n1 2 3 4 1 0
, , ,

, ,
( ){ }

= …
 

. The 
simulation then follows four main steps (Fig 1e):

•	 Step 1 (clonal evolution): At each time point, CINner tracks the number of clones in the 
population, each clone’s genotype, and the number of cells in each clone. The system is 
updated every time a new clone arises due to CNA or driver mutation events. The avail-
able data from this step consists of the clonal information, including the CN profile of each 
clone, its parent clone, the time it was born, and its cell count at each subsequent time point. 
The clones with increasing cell counts through time represent selective sweeps.

•	 Step 2 (sampling): A subsample of cells present at the final time is chosen. From this step, 
the CN profile of each sampled cell is available to the user.

•	 Step 3 (sampled cell phylogeny): The phylogeny for sampled cells in Step 2 are simulated in 
backward time, using information of clonal divisions in Step 1. This phylogeny tree is then 
available as output.

•	 Step 4 (neutral variations): neutral CNAs and passenger mutations are simulated and 
imposed on the sampled cell phylogeny from Step 3, without affecting clonal fitness rates. 
The profile of each cell, containing additional neutral CNAs and mutations, is then available 
for output.

See Section 2 in S1 Notes for details.

Inference for chromosome arm selection parameters
We retrieve pan-cancer data in TCGA from [22], and data for individual cancer types in 
PCAWG from https://dcc.icgc.org/releases/PCAWG/. To infer chromosome arm selection 
parameters, we extract samples without WGD in each cohort. Datasets with less than 10 non-
WGD samples are not analyzed.

For each cohort, we find the gain/loss frequencies for individual arms. We then infer selec-
tion parameters using the Approximate Bayesian Computation (ABC) framework. From prior 
distributions

•	 Missegregation probability pmisseg = ⋅ −5 10 5

https://dcc.icgc.org/releases/PCAWG/
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•	 Arm-missegregation probability parm misseg−
− −( )~ ,Uniform 10 105 4

•	 Selection rates λr ~ . , .Uniform 0 5 1 5( )
We create 10,000 CINner simulations. We then use abcrf [32], an ABC method in R that 

employs the random forest methodology, to infer the posterior distributions for parm misseg−  and 
λr  ’s from the cohort’s gain/loss frequencies. See Section 3 in S1 Notes for details.

Inference for whole-genome duplication
In this section, we seek to estimate pWGD , the probability that WGD occurs in each cell divi-
sion, and α, the WGD-associated CIN rate defined as

	 α=
−

p

p
misseg
homolog WGD

misseg
homolog non WGD

;

; 	

Where pmisseg
homolog non WGD; −  and pmisseg

homolog WGD;  are the probability that a chromosome homolog is 
missegregation during a division of a non-WGD or WGD cell, respectively.

For each PCAWG type, we extract samples with WGD. Cancer types with WGD propor-
tion ≤10%  are not analyzed. The posterior distributions for pWGD  and α are inferred using 
abcrf, from prior distributions

	 α∼ ( )Uniform 0 300, 	

	 log ~ . , .10 6 5 3 5pWGD( ) − −( )Uniform 	

See Section 5 in S1 Notes for details.

Inference for driver gene parameters
We focus on CLLE-ES, which was excluded from our arm selection parameter and WGD 
inference due to largely diploid karyotypes. Distributions for the lengths of focal amplifica-
tion and deletion events were fitted with Beta distributions to data. For each driver gene, we 
then compute the frequencies of gains, losses and mutations across all samples. The selection 
parameters for each driver gene are then inferred using abcrf, similar to previous sections. See 
Section 6 in S1 Notes for details.

Supporting information
S1 Notes.  Details about CINner’s mathematical model and simulation algorithm, infer-
ence method for missegregation and chromosome-arm selection parameters, parameter 
studies of the chromosome arm selection model. Inference method for WGD parameters 
and driver gene parameters.
(PDF)

S1 Table.  Number of samples per PCAWG cancer type in our inference. Estimation of 
chromosome-arm selection parameters (Figs 2 and S1–S17) was performed with non-WGD 
samples. Estimation of WGD probability and WGD-associated CIN (Figs 4, S22 and S23) 
employed WGD samples. *: Cancer types with WGD proportion ≤0.1 were excluded from the 
WGD inference.
(DOCX)

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s002
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S2 Table.  Comparison of CINner’s capabilities against currently available algorithms. 
Green indicates properties of cell-specific fitness, CNA mechanisms or aspects of the muta-
tional process that an algorithm incorporates. Red indicates the algorithm does not include 
such properties. Yellow indicates properties that are included, with important caveats. †: CN 
breakpoint (loci where CN changes between genomic regions) can be directly computed from 
simulated CN profiles. *: cell fitness is modeled based on arm-specific selection coefficients 
computed from pan-cancer data [22]. ‡: CN profiles are input from observed data and not 
simulated. A: inference for mouse T-cell lymphoma and human colon cancer organoid  
single-cell data. B: inference for breast cancer. C: inference for yeast.
(DOCX)

S1 Fig.  Inference of chromosome-arm selection rates in Breast-AdenoCA (PCAWG, 
n= 34 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S2 Fig.  Inference of chromosome-arm selection rates in Cervix-SCC (PCAWG, n=10 ). (a) 
Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parame-
ter. (b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies 
at arm level from TCGA (bottom). The simulations are computed with the posterior modes 
from (a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) among 
each arm in PCAWG and simulations. (c) Correlation between inferred selection rates and 
amplification/deletion frequencies for individual chromosome arms. Linear regressions and 
p-values from Pearson correlation.
(JPG)

S3 Fig.  Inference of chromosome-arm selection rates in CNS-GBM (PCAWG, n= 34 ). (a) 
Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parame-
ter. (b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies 
at arm level from TCGA (bottom). The simulations are computed with the posterior modes 
from (a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) 
among each arm in PCAWG and simulations. (c) Correlation between inferred selection rates 
and amplification/deletion frequencies for individual chromosome arms. Linear regressions 
and p-values from Pearson correlation.
(JPG)

S4 Fig.  Inference of chromosome-arm selection rates in CNS-Oligo (PCAWG, n=16 ). (a) 
Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parame-
ter. (b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies 
at arm level from TCGA (bottom). The simulations are computed with the posterior modes 
from (a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) 
among each arm in PCAWG and simulations. (c) Correlation between inferred selection rates 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s007
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and amplification/deletion frequencies for individual chromosome arms. Linear regressions 
and p-values from Pearson correlation.
(JPG)

S5 Fig.  Inference of chromosome-arm selection rates in ColoRect-AdenoCA (PCAWG, 
n= 37 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S6 Fig.  Inference of chromosome-arm selection rates in Head-SCC (PCAWG, n= 24 ). (a) 
Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parame-
ter. (b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies 
at arm level from TCGA (bottom). The simulations are computed with the posterior modes 
from (a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) 
among each arm in PCAWG and simulations. (c) Correlation between inferred selection rates 
and amplification/deletion frequencies for individual chromosome arms. Linear regressions 
and p-values from Pearson correlation.
(JPG)

S7 Fig.  Inference of chromosome-arm selection rates in Kidney-ChRCC (PCAWG, n= 33 ). 
(a) Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parameter. 
(b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies at arm 
level from TCGA (bottom). The simulations are computed with the posterior modes from (a). 
Spearman’s correlation coefficient rho between frequencies of gains (or losses) among each arm in 
PCAWG and simulations. (c) Correlation between inferred selection rates and amplification/dele-
tion frequencies for individual chromosome arms. Linear regressions and p-values from Pearson 
correlation.
(JPG)

S8 Fig.  Inference of chromosome-arm selection rates in Kidney-RCC (PCAWG, n= 60 ). (a) 
Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parameter. 
(b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies at 
arm level from TCGA (bottom). The simulations are computed with the posterior modes from 
(a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) among each 
arm in PCAWG and simulations. (c) Correlation between inferred selection rates and amplifi-
cation/deletion frequencies for individual chromosome arms. Linear regressions and p-values 
from Pearson correlation.
(JPG)

S9 Fig.  Inference of chromosome-arm selection rates in Liver-HCC (PCAWG, n= 31 ). 
(a) Prior distribution (light blue) and posterior distribution (dark blue) from inference with 
ABC random forest. Broken line represents the mode in the posterior distribution for each 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s012
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parameter. (b) Comparison between simulations with fitted parameter (top) and gain/loss fre-
quencies at arm level from TCGA (bottom). The simulations are computed with the posterior 
modes from (a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) 
among each arm in PCAWG and simulations. (c) Correlation between inferred selection rates 
and amplification/deletion frequencies for individual chromosome arms. Linear regressions 
and p-values from Pearson correlation.
(JPG)

S10 Fig.  Inference of chromosome-arm selection rates in Lung-AdenoCA (PCAWG, 
n=14 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S11 Fig.  Inference of chromosome-arm selection rates in Lung-SCC (PCAWG, n=14 ). (a) 
Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parame-
ter. (b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies 
at arm level from TCGA (bottom). The simulations are computed with the posterior modes 
from (a). Spearman’s correlation coefficient rho between frequencies of gains (or losses) among 
each arm in PCAWG and simulations. (c) Correlation between inferred selection rates and 
amplification/deletion frequencies for individual chromosome arms. Linear regressions and 
p-values from Pearson correlation.
(JPG)

S12 Fig.  Inference of chromosome-arm selection rates in Ovary-AdenoCA (PCAWG, 
n= 20 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S13 Fig.  Inference of chromosome-arm selection rates in Prost-AdenoCA (PCAWG, 
n=19 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012902.s014
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S14 Fig.  Inference of chromosome-arm selection rates in Skin-Melanoma (PCAWG, 
n=16 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S15 Fig.  Inference of chromosome-arm selection rates in Stomach-AdenoCA (PCAWG, 
n=18 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S16 Fig.  Inference of chromosome-arm selection rates in Thy-AdenoCA (PCAWG, n= 47 ). 
(a) Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parameter. 
(b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies at arm 
level from TCGA (bottom). The simulations are computed with the posterior modes from (a). 
Spearman’s correlation coefficient rho between frequencies of gains (or losses) among each arm in 
PCAWG and simulations. (c) Correlation between inferred selection rates and amplification/dele-
tion frequencies for individual chromosome arms. Linear regressions and p-values from Pearson 
correlation.
(JPG)

S17 Fig.  Inference of chromosome-arm selection rates in Uterus-AdenoCA (PCAWG, 
n= 32 ). (a) Prior distribution (light blue) and posterior distribution (dark blue) from infer-
ence with ABC random forest. Broken line represents the mode in the posterior distribution 
for each parameter. (b) Comparison between simulations with fitted parameter (top) and 
gain/loss frequencies at arm level from TCGA (bottom). The simulations are computed with 
the posterior modes from (a). Spearman’s correlation coefficient rho between frequencies 
of gains (or losses) among each arm in PCAWG and simulations. (c) Correlation between 
inferred selection rates and amplification/deletion frequencies for individual chromosome 
arms. Linear regressions and p-values from Pearson correlation.
(JPG)

S18 Fig.  Inference of chromosome-arm selection rates from pan-cancer TCGA (n= 8207) . 
(a) Prior distribution (light blue) and posterior distribution (dark blue) from inference with ABC 
random forest. Broken line represents the mode in the posterior distribution for each parameter. 
(b) Comparison between simulations with fitted parameter (top) and gain/loss frequencies at arm 
level from TCGA (bottom). The simulations are computed with the posterior modes from (a). 
Spearman’s correlation coefficient rho between frequencies of gains (or losses) among each arm in 
TCGA and simulations.
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(JPG)

S19 Fig.  Analysis of selection rates for GAIN and LOSS chromosome arms. (a–c) Impact 
of varying parameters on clone count (a), average cell fitness (b), and average count of clonal 
and subclonal missegregations (c) (size of circles indicates the total missegregation counts). 
(c) MRCA age and average missegregation counts, grouped based on clonality (clonal/sub-
clonal) and type (gain/loss), as selection rates for LOSS arms increase (variables correspond to 
highlighted segment in (c)).
(JPG)

S20 Fig.  Analysis of probability of missegregation and chromosome-arm selection rates. 
Impact of varying parameters on average Shannon diversity index (a), average fitness (b), and 
average ploidy in sample (c).
(JPG)

S21 Fig.  Analysis of growth rate and average cell count. Impact of varying parameters on 
clone count (a), and average ploidy in sample (b).
(JPG)

S22 Fig.   Inference of WGD probability and WGD-aneuploidy rate in individual PCAWG 
cancer types. Prior distribution (light blue) and posterior distribution (dark blue) from 
inference with ABC random forest, for Breast-AdenoCA (a), Cervix-SCC (b), CNS-GBM (c), 
ColoRect-AdenoCA (d), Head-SCC (e), Kidney-ChRCC (f), Kidney-RCC (g), and Liver-HCC 
(h). Broken line represents the mode in the posterior distribution for each parameter.
(JPG)

S23 Fig.  Inference of WGD probability and WGD-aneuploidy rate in individual PCAWG 
cancer types. (a–f) Prior distribution (light blue) and posterior distribution (dark blue) from 
inference with ABC random forest, for Lung-AdenoCA (a), Lung-SCC (b), Ovary-AdenoCA 
(c), Skin-Melanoma (d), Stomach-AdenoCA (e), and Uterus-AdenoCA (f). Broken line 
represents the mode in the posterior distribution for each parameter. (g and h) Comparisons 
between average genomic fraction of monosomy in non-WGD samples and inferred WGD 
probability (g) and WGD-aneuploidy rate (h) for each cancer type.
(JPG)

S24 Fig.  Inference of driver gene selection rates in CLLE-ES (PCAWG, n= 95 ). (a) Ratios 
of focal amplification lengths over corresponding chromosome arm lengths are fitted with 
a Beta distribution. (b) Prior distribution (light blue) and posterior distribution (dark blue) 
from inference with ABC random forest. Broken line represents the mode in the posterior 
distribution for each parameter.
(JPG)
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