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ABSTRACT 58 

Whole-genome doubling (WGD) is a critical driver of tumor development and is linked to drug 59 

resistance and metastasis in solid malignancies. Here, we demonstrate that WGD is an ongoing 60 

mutational process in tumor evolution. Using single-cell whole-genome sequencing, we measured 61 

and modeled how WGD events are distributed across cellular populations within tumors and 62 

associated WGD dynamics with properties of genome diversification and phenotypic consequences 63 

of innate immunity.  We studied WGD evolution in 65 high-grade serous ovarian cancer (HGSOC) 64 

tissue samples from 40 patients, yielding 29,481 tumor cell genomes. We found near-ubiquitous 65 

evidence of WGD as an ongoing mutational process promoting cell-cell diversity, high rates of 66 

chromosomal missegregation, and consequent micronucleation. Using a novel mutation-based 67 

WGD timing method, doubleTime, we delineated specific modes by which WGD can drive tumor 68 

evolution: (i) unitary evolutionary origin followed by significant diversification, (ii) independent WGD 69 

events on a pre-existing background of copy number diversity, and (iii) evolutionarily late clonal 70 

expansions of WGD populations. Additionally, through integrated single-cell RNA sequencing and 71 

high-resolution immunofluorescence microscopy, we found that inflammatory signaling and cGAS-72 

STING pathway activation result from ongoing chromosomal instability and are restricted to tumors 73 

that remain predominantly diploid. This contrasted with predominantly WGD tumors, which exhibited 74 

significant quiescent and immunosuppressive phenotypic states. Together, these findings establish 75 

WGD as an evolutionarily 'active' mutational process that promotes evolvability and dysregulated 76 

immunity in late stage ovarian cancer.   77 
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INTRODUCTION 78 

Whole-genome doubling (WGD) is found in >30% of solid cancers, leading to increased rates of 79 

metastasis, drug resistance and poor outcomes1. Often observed on a background of TP53 mutation, 80 

genome doubling leads to increased chromosomal instability (CIN) and karyotypic diversification2. 81 

Several studies have reported that the fitness advantage of genome-doubled cells is conferred 82 

through its buffering effect on deleterious mutations2–4. In vitro studies indicate that genome doubling 83 

also leads to major phenotypic consequences, such as chromatin and epigenetic changes5, 84 

replication stress6 and cellular quiescence5,6.  Previous studies of WGD in patient tumors  used bulk 85 

whole-genome sequencing (WGS), which requires computational reconstruction of somatic 86 

evolutionary histories7, making cellular diversity difficult to infer. These analyses have tended to cast 87 

WGD as an early event in tumor evolution8, restricting its occurrence and mechanistic significance 88 

to an etiologic role7. However, live-cell analysis has previously suggested that errors in chromosome 89 

segregation often lead to cytokinesis failure and the ongoing generation of polyploid cells9, 90 

suggesting WGD might be an ongoing process during tumor evolution. Recent reports from in vitro 91 

and PDX models have demonstrated that temporal and evolutionary dynamics of genome doubling 92 

can be captured at single-cell resolution10,11. However, in the patient setting, how dynamical 93 

properties of genome doubling drive evolution and phenotypic state changes at the time of clinical 94 

presentation remains understudied. We contend that applying single cell approaches to clinical 95 

samples therefore opens the opportunity to ask new questions of how genome doubling evolution 96 

drives genomic diversity and phenotypic cellular states in the patient context.  97 

We used single-cell whole-genome sequencing to study WGD in the context of high-grade serous 98 

ovarian cancer (HGSOC), a tumor type with ubiquitous TP53 mutation and frequent WGD. We 99 

analyzed 65 untreated HGSOC samples at the time of diagnosis from 40 patients with single-cell 100 

whole-genome sequencing (29,481 tumor cell genomes) and site-matched immunofluorescent 101 

staining for markers of micronuclei and DNA sensing, known byproducts of chromosome segregation 102 

defects. Using this multi-modal approach, we conclude WGD is an ongoing mutational process which 103 

promotes evolvability through cell-cell diversity, high rates of CIN, and pervasive co-occurrence of 104 

cells with heterogeneous ploidy states within the same tumor.  We delineated three modes of WGD 105 

evolution: (i) early fixation of a single event, (ii) late fixation of multiple independent WGD events, 106 

and (iii) emergence of late WGD clones. By linking genomic measurements with cellular phenotypes 107 

in previously generated site-matched single-cell RNA sequencing data13 we found that 108 

microenvironmental inflammatory signaling remains active in tumors that remain predominantly 109 

diploid in contrast to enriched quiescent and immunosuppressive states in predominantly WGD 110 

tumors. Our findings therefore point to WGD as a critical co-variate of inflammatory signaling and 111 

immunosuppression. Given our findings are derived from clinical samples at disease presentation, 112 
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we suggest our study should further motivate and inform novel therapeutic targeting of WGD and 113 

CIN12,13. 114 

RESULTS 115 

Ovarian cancer patient cohort 116 

Surgical specimens (n=65) from treatment-naive HGSOC patients (n=40) were collected from 117 

multiple sites during primary debulking surgery or laparoscopy, as previously described14 (Fig. 1A, 118 

Extended Data Fig. 1A, Methods). Patients were confirmed as advanced HGSOC by gynecologic 119 

pathologists. Sampled sites included adnexa (i.e. ovary and fallopian tube), omentum, peritoneum, 120 

bowel, and other intraperitoneal sites (Extended Data Fig. 1B). Clinical characteristics of all patients 121 

are summarized in Extended Data Fig. 1B and Supp. Tab. 1. Somatic and germline driver 122 

mutations were determined by MSK-IMPACT clinical sequencing, including ubiquitous somatic TP53 123 

loss, somatic and germline BRCA1/2 loss, somatic CDK12 mutation and somatic CCNE1 124 

amplification (Extended Data Fig. 1B)14. Mutational signatures derived from whole-genome 125 

sequencing included homologous recombination-deficient (HRD)-Dup (BRCA1 mutant-like) and 126 

HRD-Del (BRCA2 mutant-like) cases, as well as HR-proficient foldback inversion-bearing (FBI) and 127 

tandem duplicator (TD) tumors (18 HRD-Dup, 8 HRD-Del, 13 FBI, 1 TD) using integrated point 128 

mutation and structural variations, as previously described11,14,15.  129 

Single-cell whole-genome sequencing and orthogonal phenotypic assays 130 

Tumor-derived single-cell suspensions were flow-sorted to remove CD45+ immune cells, then 131 

subject to single-cell whole-genome sequencing (scWGS) using the Direct Library Preparation 132 

protocol16 (DLP+, Methods, Supp. Tab. 2). A total of 53,005 single-cell whole-genomes (median 133 

1,345 per patient) were generated with median coverage depth of 0.078 per cell and median 134 

coverage breadth of 0.073 (Extended Data Fig. 2A-B) with 29,481 genomes admitted into analysis 135 

following quality control (Methods). In addition, whole-slide H&E and immunofluorescence (IF) 136 

images from adjacent formalin-fixed paraffin-embedded (FFPE) tissue sections were obtained for 37 137 

out of 40 patients (Supp. Tab. 2). IF sections were assessed for DNA sensing mechanisms and 138 

genome sequencing-independent readouts of chromosomal instability (DAPI, cGAS) (Methods). In 139 

addition, we leveraged previously-generated single-cell RNA sequencing (scRNA-seq) data from 140 

both CD45+ and CD45- compartments of 32 patients (52 scRNA samples site matched to scWGS)14, 141 

enabling genotype-phenotype analyses of these tissues. Together the dataset comprises a single-142 

cell resolution multi-modal measurement of aneuploidies, genomic and chromosomal instability, and 143 

their cell-intrinsic and tumor microenvironment phenotypic readouts in HGSOC patient samples. 144 
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Whole-genome doubling at single-cell resolution  145 

Using the 29,481 high-quality single cell cancer genomes, we first investigated the distribution of 146 

WGD states across our cohort and within each tumor. We inferred the number of WGD events in the 147 

evolutionary history of each cell based on allele-specific copy-number profiles17,18 (Fig. 1B). The 148 

distribution of allele-specific copy number features showed clear separation between WGD states, 149 

permitting assignment of per-cell WGD multiplicities of 0 (0×WGD, 46% of cells), 1 (1×WGD, 53%) 150 

and 2 (2×WGD, 1%) (Extended Data Fig. 2H-I). The number of WGD events per cell correlated with 151 

both cell size measured through the optical components of DLP+ (Extended Data Fig. 2J), and 152 

mitochondrial copy number (Extended Data Fig. 2K), providing orthogonal validation based on 153 

known correlates of nuclear genome scaling16,19. 154 

We then analyzed intra-patient WGD states at single-cell resolution, finding pervasive heterogeneity 155 

in WGD states within tumors. For example, patient 045 (Fig. 1C) simultaneously harbored a minority 156 

of 0×WGD (1%, Fig. 1D), a majority of 1×WGD (97%, Fig. 1E), and a minor fraction of 2×WGD cells 157 

(2%, Fig. 1F). Surprisingly, tumors with co-existing WGD states were present in 36/40 patients, 158 

including 31/32 of the patients with >200 tumor cells (Fig. 1G). In total, 5% of all tumor cells (n=1,481 159 

cells), were part of non-dominant WGD states across the cohort (median of 2.6% of cells per patient; 160 

Extended Data Fig. 2L). As each patient’s tumor was typically dominated by a single WGD state 161 

(the dominant state comprising >85% of cells for 38/40 patients), we dichotomized each tumor as 162 

either Prevalent WGD: harboring >50% of 1×WGD or 2×WGD cells (26/40 patients); or Rare WGD: 163 

with ≥50% 0×WGD cells (14/40 patients). Prevalent WGD patients comprised 60% of the cohort, 164 

were older, and were enriched for FBI and HRD-Del mutation signature patients, consistent with 165 

previous bulk genome sequencing studies7,14 (Extended Data Fig. 2M-P). Thus, while average 166 

signals corroborate previous bulk estimates of WGD prevalence across patients17, single cell 167 

analysis established that WGD exists as a distribution over 0×WGD, 1×WGD, 2×WGD cells within 168 

tumors, with at least 2 co-existing WGD states observed in the majority of patients. 169 

Evolutionary histories of WGD clones 170 

We next analyzed evolutionary histories of WGD and non-WGD clones including timing the origin of 171 

single or multiple WGD expansions within each patient. We developed doubleTime, a multi-step 172 

computational approach that (i) uses a scWGS mutation caller to predict SNVs (Articull, 173 

manuscript in prep.), (ii) identifies SNV clones using SBMClone20, (iii) constructs a clone phylogeny, 174 

(iv) places WGD events on branches of the phylogeny, and (v) infers mutation timing including the 175 

relative timing of WGDs on the WGD branches (Fig. 2A, Methods). For 23 out of 25 Prevalent WGD 176 

patients, a single ancestral WGD event was common to the dominant 1×WGD population of cells 177 

(Fig. 2B). For two patients (025 and 045) we observed coexisting WGD clones from distinct WGD 178 
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events, consistent with lineage divergence in the ancestral diploid population followed by expansion 179 

of independent WGD clones (Fig. 2C, Extended Data Fig. 3A-B). Within both patients, the multiple 180 

WGD events were predicted to occur at approximately the same mutation time in the tumor’s life 181 

history. Remarkably, for both of these patients, WGD clones coexisted in multiple anatomic sites. All 182 

WGD clones were present in both right adnexa and omentum of 025. For patient 045, the left adnexa 183 

harbored one of the three of the WGD clones whereas the right adnexa, omentum, and peritoneal 184 

tumors were mixtures of all three WGD clones. The remaining 14 patients did not show evidence of 185 

expanded WGD clones through SNV analysis (Fig. 2D), although all harbored small populations of 186 

1×WGD cells (Fig. 2D). 187 

We then investigated the evolutionary timing of WGD clonal expansions to determine if they fixed 188 

early in tumorigenesis, or whether clonal expansions of WGD cells occurred throughout their life 189 

histories. Prevalent WGD patients exhibited increased mutation time from fertilization to surgical 190 

resection (total C>T CpG burden) vs Rare WGD patients, similar to WGD vs non-WGD patients in 191 

previous bulk WGS analyses7 (Fig. 2E). However, while bulk genome sequencing studies of ovarian 192 

tumors reported early acquisition of WGD7, we found that later WGD clonal expansions inferred from 193 

scWGS were common, with 7/25 WGD events occurring more than 50% of the way through the 194 

tumors life history. For three of the late WGD patients (045, 075 and 081), WGD events 195 

approximately coincided with the most recent common ancestor (MRCA). (Fig. 2B-C,E). These 196 

same three patients, in addition to late WGD patient 125, all exhibited extant populations of 0×WGD 197 

cells: 17 (0.9%) 0×WGD cells for 045 (Extended Data Fig. 3A), 34 (3.9%) 0×WGD cells for 075 198 

(Extended Data Fig. 3B), 14 (27%) 0×WGD cells for 125 (Extended Data Fig. 3C), and 38 0×WGD 199 

cells in the omentum sample of 081 which contained the site-specific WGD expansion (Fig. 2B). 200 

Thus, in these four patients, more recently expanded WGD clones co-existed with extant cells from 201 

the 0×WGD population from which they were derived. 202 

The existence of a substantial fraction of subclonal WGD subpopulations (1×WGD in 0×WGD clones, 203 

2×WGD in 1×WGD clones) across multiple clones was consistent with parallel and ongoing WGD. 204 

We investigated if these rare subclonal WGD cells shared common mutations, indicative of late 205 

WGD-associated clonal expansions (Fig. 2B-D,F). In patient 025, a small subpopulation of 43 206 

2×WGD cells harbored 325 SNVs specific to the 2×WGD cells (Extended Data Fig. 3D). Subclonal 207 

WGD expansions in patients 031 (7 cells) and 006 (27 cells) were too small to be detected by SNV 208 

analysis, but could be identified by copy-number events shared across multiple subclonal WGD cells 209 

(Extended Data Fig. 3E-F). For other patients, subclonal WGD cells were evenly distributed across 210 

multiple clones, indicative of continual WGD across clonal populations. Together, quantifying the 211 

evolutionary history of WGD and chromosomal instability in single cells revealed distinct modes of 212 

ongoing WGD evolution: (i) diploid tumors with a background rate of unexpanded WGD cells, (ii) 213 
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tumors with evolutionary late WGD expansions including parallel expansion of multiple WGD clones, 214 

and (iii) evolutionary early WGD tumors with a single dominant WGD clone.  215 

Post WGD genomic diversification 216 

Leveraging single-cell-resolution measurements, we next asked how WGD promotes genomic 217 

diversification and evolvability. We first quantified cell-to-cell genomic heterogeneity using pairwise 218 

nearest-neighbor copy-number distance (NND) for each cell (Methods, Extended Data Fig. 4A). 219 

Mean NND increased with WGD multiplicity and was highest for subclonal WGD populations, with 220 

1×WGD populations in Rare WGD patients exhibiting higher mean NND than 1×WGD populations 221 

in Prevalent WGD patients, and 2×WGD cells in predominantly 1×WGD tumors exhibiting the highest 222 

cell-cell diversity (Fig. 3A). Some Prevalent WGD patients exhibited surprising levels of diversity: in 223 

8 patients, cells were on average different for 10% of the genome when compared with the most 224 

similar cell. The empirical distribution of NND values had a heavy tail (Extended Data Fig. 4B) with 225 

unexpected enrichment for highly divergent cells with very distinct copy-number profiles. We defined 226 

divergent cells as those with NND greater than the 99th percentile of a Beta distribution fit to the 227 

NND values (Fig. 3B). The CN profiles of divergent cells resembled the previously reported ‘hopeful 228 

monsters’ found in colorectal cancer organoids21, suggesting they may be the product of unstable 229 

tetraploid cells undergoing multipolar mitosis (Fig. 3C). When compared with clonal CN profiles, 230 

divergent cells harbored elevated rates of whole chromosome and chromosome arm loss, uniformly 231 

distributed across the genome (Extended Data Fig. 4C-D), accompanied by a significant rate of arm 232 

and chromosome nullisomy for both Rare and Prevalent WGD patients (Extended Data Fig. 4E). 233 

Notably, these divergent cells were present in 39/40 patients (mean 2.8% of cells), with higher rates 234 

in Prevalent WGD patients suggesting an increased propensity for abnormal mitoses (Fig. 3D). 235 

Interestingly, the three patients with large clonal expansion of late WGD (081, 045 and 025), ranked 236 

first, fourth and seventh highest in divergent cell fraction. Furthermore, patient 049 had the second-237 

highest divergent cell fraction and the third most recent clonal WGD behind two of the three WGDs 238 

in 045. Overall, our data is concordant with previous evidence suggesting WGD cell populations 239 

sustain a period of instability following WGD, which can result from an increase in the number of 240 

centrosomes22. 241 

To investigate rates of chromosome missegregation events, we computed copy number alterations 242 

in each cell (excluding divergent cells) accrued since its immediate ancestor in a phylogeny inferred 243 

for each patient (Fig. 3E, Extended Data Fig. 4F, Methods). This enabled inference of rates of cell-244 

specific (and therefore most recent) copy number changes. The rate (counts per cell) of gains and 245 

losses of whole chromosomes, chromosome arms, and segments (>15MB) increased with WGD 246 

multiplicity across all event types (Fig. 3F). We recomputed a ploidy-adjusted version of the gain and 247 

loss rates that accounted for the increased opportunity for copy-number events in higher ploidy cells. 248 
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The ploidy-adjusted rates (counts per cell per GB) showed similar increases, highlighting that the 249 

rate differences were not merely a function of increased chromosome number but were instead 250 

indicative of systemic changes in post-WGD cells (Extended Data Fig. 4G, Methods). 1×WGD 251 

subpopulations had higher ploidy-adjusted rates of chromosome losses in Rare WGD patients than 252 

Prevalent WGD patients, suggesting more recently emerging WGD cells were more prone to 253 

chromosome loss events, or that early WGD populations had stabilized. For instance, ploidy-254 

adjusted chromosome losses were 4.1 times more abundant in Rare WGD 1×WGD cells compared 255 

to Rare WGD 0×WGD cells (p=5.6×10-4, Mann-Whitney U test), 2.3 times more abundant in 256 

Prevalent WGD 1×WGD cells compared to Rare WGD 0×WGD cells (p=5.6×10-4, Mann-Whitney U 257 

test), and 1.8 times more abundant in Rare WGD 1×WGD cells compared to Prevalent WGD 1×WGD 258 

cells (p=0.016, Mann-Whitney U test). 259 

One of the phenotypic consequences of chromosome segregation errors is the formation of 260 

micronuclei, which are chromosome or chromosome arm containing structures that are distinct from 261 

the primary nucleus during interphase. Micronuclear envelopes are rupture-prone, often exposing 262 

their enclosed genomic double-stranded DNA (dsDNA) to the cytoplasm23–25, leading to activation of 263 

innate immune signaling driven by the cytosolic dsDNA sensing cGAS-STING pathway26. We asked 264 

whether the propensity of chromosome missegregation correlates with micronuclei formation via 265 

high-resolution immunofluorescence microscopy of cGAS and DAPI staining on FFPE sections, site-266 

matched to scWGS datasets. We used a deep learning approach to automatically detect primary 267 

nuclei (PN) and cGAS+ ruptured micronuclei (MN), enabling whole-slide quantification of MN-to-PN 268 

ratios at scale (1,779,351 PN and 83,352 ruptured MN from 61 quality-filtered IF images of slides 269 

obtained for 31 patients, Fig. 3G, Methods). Ruptured micronuclei per primary nucleus (MN rate) 270 

ranged from 0.005 to 0.31 (median 0.05) and was 2 times higher in Prevalent WGD patients (p<0.01, 271 

Fig. 3H, Methods), with MN rate showing modest correlation with rates of cell specific copy number 272 

change (Fig. 3I). Thus, WGD-related copy number change associates with the formation of 273 

micronuclei and raises the possibility that micronuclei are a vehicle for losses and segmental 274 

amplifications in HGSOC27.  275 

Abnormalities in micronuclei have been proposed as a mechanism for the formation of complex 276 

chromosomal rearrangements, chromothripsis and extrachromosomal DNA, all of which can lead to 277 

elevated rates of oncogene amplification. We found that clonal (>90% cells) high-level amplification 278 

(HL Amps, Methods, Fig. 3J) were more frequent in Prevalent WGD patients (p=0.028 Mann-279 

Whitney U test, Fig. 3K), including events amplifying MDM2 (002), CCNE1 (105), ERBB2 (044, 051), 280 

CCND1 (065), and CCND3 (083). Only 1 of the 14 clonal HL Amps was found in a Rare WGD patient, 281 

involving the CCNE1 gene in patient 004, corroborated by bulk sequencing7 (Extended Data Fig. 282 

4H). We classified HL Amps as low cancer cell fraction (CCF) if they occurred in less than 10% of 283 

the patient cell population. Prevalent WGD was associated with a significantly higher number of low-284 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.11.602772doi: bioRxiv preprint 

https://paperpile.com/c/60AbXa/cP0r+RCwO+2W3Q
https://paperpile.com/c/60AbXa/pUfp
https://paperpile.com/c/60AbXa/PFpd
https://paperpile.com/c/60AbXa/TxUe
https://doi.org/10.1101/2024.07.11.602772


 

10 

CCF HL Amps per cell compared to Rare WGD (p=0.022 Mann-Whitney U test, Fig. 3L), highlighting 285 

that the mutational process that generates HL Amps may itself be increased in Prevalent versus 286 

Rare WGD patients. Many of the low prevalence HL Amps are undetectable at a bulk level, 287 

highlighting the need for single cell data to identify these events (Fig. 3M). 288 

Taken together, multiple forms of cell-to-cell genome diversification, including chromosomal 289 

missegregations, multipolar mitoses, ruptured micronuclei and HL Amps, all exhibited elevated rates 290 

in Prevalent WGD patients, firmly linking WGD to increased cellular genomic diversification in 291 

HGSOC. 292 

Evolutionary dynamics of WGD and non-WGD clones 293 

Given the increased rate of chromosomal instability associated with WGD, we next used a 294 

phylogenetic approach to investigate the impact of this instability on tumor evolution and the extent 295 

to which WGD promotes punctuated vs gradual evolutionary change (Fig. 4A, Methods). We first 296 

focused on events predicted to be on the ancestral branches of each patient. These events were 297 

divided into those inferred to occur (i) after WGD in the ancestral branches of prevalent WGD patients 298 

(post-WGD) (ii) before WGD in ancestral branches of rare WGD patients (pre-WGD) or (iii) on the 299 

ancestral branches of rare WGD patients (non-WGD) (Fig. 4B). Rates of losses and gains of arms 300 

and chromosomes were significantly higher post-WGD relative to pre-WGD or non-WGD ancestral 301 

branches. Thus WGD was associated not only with increased rates of CIN, but also increased 302 

propensity for fixation of the changes resulting from CIN. Gains of arms and especially whole 303 

chromosomes were rare pre-WGD or on non-WGD ancestral branches, and were significantly more 304 

prevalent post-WGD (Fig. 4B). This highlights that commonly observed pseudo-triploid karyotypes 305 

are unlikely to arise through incremental gains on a diploid background. Instead, triploidy in HGSOC 306 

most likely results from WGD and both pre- and post-WGD losses. 307 

To investigate punctuated vs gradual evolution post-WGD, we interrogated the post-WGD events for 308 

all high-confidence clonal (>95% of cells) and subclonal (<95% of cells) WGD clones (Fig. 4C). 309 

Comparing post-WGD events between clonal and subclonal WGD clones, we found clonal WGDs to 310 

have significantly more post-WGD events of all types (Fig. 4D). For instance, clonal WGDs accrued 311 

on average 3 times as many whole chromosome losses compared to subclonal WGDs. The number 312 

of events post-WGD for some subclonal WGD was surprisingly low. For example, the large WGD 313 

subclone (70% of cells) in patient 081 exhibited only two arm loss events post-WGD, while the many 314 

cells with more highly divergent genomes post-WGD were unique, possibly indicative of their 315 

comparable lack of fitness and inability to expand. In clonal WGDs, the number of chromosome 316 

losses and arm gains and losses were significantly correlated with the age of the WGD as estimated 317 

using mutations (Methods, Extended Data Fig. 4J). Patient 014 with a clonal WGD exemplifies 318 
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post-WGD evolution (Fig. 4E). In this patient, a single cell distinct from the majority of the cells in the 319 

patient shared several post-WGD copy number changes with the majority population, but lacked 2 320 

focal HL Amps common to the remaining cells, and retained 4 copies post-WGD of 2q, 6q, 7, 8q, 321 

and 18, all of which had 3 copies in the majority of cells. Thus, this outlying cell represented an 322 

intermediate stage of evolution post-WGD, likely outcompeted by the other cells with additional focal 323 

HL Amps and arm and chromosome losses. Post-WGD divergent evolution with clone specific HL 324 

Amps and parallel allele-specific losses was also observed, as exemplified by patient 083 (Fig. 4F). 325 

WGD-specific cell intrinsic and tumor microenvironment phenotypes 326 

We next investigated phenotypic associations with WGD states to understand the cancer cell-327 

intrinsic, stromal, and immune activation states found in HGSOC, leveraging previously published 328 

patient and site matched scRNA-seq data14. We first compared the fraction of cancer cells in the G1, 329 

S and G2/M phase of the cell cycle. Prevalent WGD samples exhibited a lower proportion of S-phase 330 

cells and a higher proportion of G1-phase cells, consistent with a slower proliferation rate and 331 

elongated G1 progression through the cell cycle (Fig. 5A, Methods)28. Pseudotime inference of cell 332 

cycle trajectories revealed divergent cell cycle progression in Prevalent vs Rare WGD tumors (Fig. 333 

5B,C, Extended Data Fig. 5A-E, Methods). In particular, MCM complex genes involved in licensing 334 

of DNA replication origins at the G1/S transition (MCM2, MCM6) were expressed earlier in the cell 335 

cycle in Prevalent WGD tumors, together with factors involved in MCM complex loading such as 336 

CDC6 (Fig. 5D-E), thus facilitating the replication of larger genomes. Mitotic cyclins (CCNE1) and 337 

genes involved in DNA repair (BRCA2, MSH2) had altered temporal order in association with WGD. 338 

We also observed correlation between cell cycle distribution and chromosomal missegregation event 339 

rates in a WGD-specific manner (Fig. 5F), where the fraction of cells in G1 was highly correlated 340 

with rates of chromosome losses and arm losses and gains in Rare WGD patients, but not in 341 

Prevalent WGD patients (Fig. 5G, Extended Data Fig. 5G). This might be due to the well-342 

documented G1 cell cycle arrest that occurs upon chromosome missegregation and which must be 343 

overcome for cells to tolerate CIN29,30, an evolutionary milestone that is likely achieved by clones that 344 

have undergone WGD. 345 

We next proceeded to investigate the association between WGD and cancer cell-intrinsic immune 346 

signaling. Cells in Prevalent WGD tumors showed a significant decrease in Type I (IFN-α/IFN-β) and 347 

Type II (IFN-γ) interferon, inflammatory pathways, complement and TNFa/NF-κB signaling (Fig. 6A). 348 

We investigated how chromosomal instability phenotypes encoded in a CIN gene expression 349 

signature31 related to WGD state and found this was significantly higher in Prevalent WGD (Fig. 6A), 350 

likely due to the elevated missegregation rates as observed in scWGS. Interestingly, STING 351 

(TMEM173), an innate immune response gene activated by the presence of cytosolic DNA, was 352 

expressed at significantly lower levels in Prevalent WGD (Fig. 6B), suggesting STING expression 353 
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may be repressed in Prevalent WGD tumors to evade the immunostimulatory effects of CIN32–34. In 354 

the context of Rare WGD, STING expression showed strong positive correlation with rates of 355 

missegregation, especially chromosome losses (Fig. 6C). In addition, expression of E2F target 356 

genes showed strong negative correlation with chromosome losses in Rare WGD (Fig. 6D). We 357 

validated our findings in an hTERT-immortalized retinal pigment epithelial (RPE1) cell line 358 

(Methods). In diploid RPE1 cells (Extended Data Fig. 6D-E), treatment with nocodazole and 359 

reversine resulted in increasing levels of chromosome and arm losses and gains (Extended Data 360 

Fig. 6F), in addition to concomitant increases in G1 cell fraction (Extended Data Fig. G) and STING 361 

expression (Extended Data Fig. 6H). Next we compared non-WGD cells in a later passage with a 362 

spontaneously arising WGD clone present in the same sample (Extended Data Fig. 6i-J, Methods). 363 

We found no difference in cell cycle fractions (Extended Data Fig. 6K), but STING expression was 364 

decreased in the WGD clone (Extended Data Fig. 6L). In the Rare WGD context, our results are 365 

concordant with the hypothesis that CIN-associated cytosolic DNA activates NF-κB, which promotes 366 

transcription of STING35, and suppresses E2F targets36,37, ultimately leading to G1 arrest or delay. 367 

Critically, we note that this cascade only appears to hold in Rare WGD tumors, suggesting signal re-368 

wiring in Prevalent WGD tumors that enables highly chromosomally unstable tumor cells to adapt to 369 

ongoing chromosome missegregation events, thereby evading anti-tumor immune surveillance, as 370 

recently proposed38. 371 

We next analyzed the impact of WGD and chromosome missegregation on the tumor immune 372 

microenvironment (TME). Consistent with the increased expression of IFN-stimulated genes (ISGs) 373 

observed in the cancer cells of Rare WGD patients, we observed enrichment of CXCL10+CD274+ 374 

macrophages (M1.CXCL10), IFN-producing plasmacytoid (pDCs), and activated dendritic cells 375 

(cDC1) in the microenvironments of Rare WGD tumors (Fig. 6E-F). All major cell types surveyed 376 

showed significant enrichment of ISGs in Rare WGD tumors, indicating a pro-inflammatory immune 377 

response (Fig. 6G). By contrast, the TME of Prevalent WGD tumors showed enrichment for 378 

endothelial cells, pericytes, and cancer-associated fibroblasts (CAFs) (Fig. 6F), along with 379 

suppression of ISG expression. Prevalent WGD tumors also showed slight enrichment of cytotoxic 380 

CD8+ T cells, possibly due to mutually exclusivity between cytotoxic CD8+ T cells and 381 

CXCL10+CD274+ macrophages across the cohort (Extended Data Fig. 5C). Notably, all major cell 382 

types in the TME of Prevalent WGD tumors, except for endothelial cells, exhibited marked depletion 383 

in cell cycle related gene expression, consistent with a pro-angiogenic yet immunosuppressive 384 

microenvironment in WGD tumors (Fig. 6H).  385 
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DISCUSSION 386 

Using single-cell whole-genome sequencing matched with scRNA and tissue-based quantification 387 

of ruptured micronuclei, we illuminate the significant impact of WGD on tumor evolvability and identify 388 

associations with cell cycle regulation, inflammatory signaling, angiogenesis and 389 

immunosuppressive phenotypes. Through evolutionary timing of WGD, we find variation in clonal 390 

WGD expansions from very early to late7, in addition to both subclonal WGD expansions and multiple 391 

independent WGD expansions that would be difficult to identify from bulk sequencing data18. 392 

Interestingly, for two patients with independent WGD clones, the WGD events were approximately 393 

synchronous in the tumor's life history. The remaining patients could be classified into three groups: 394 

those with small fractions of non-clonal WGD cells, those with a late-emerging non-dominant WGD 395 

clone, and those with a dominant WGD clone. Importantly, we did not observe coexisting clones with 396 

varying WGD timing. These findings suggest that the evolutionary history of WGD in HGSOC is 397 

characterized by the rapid expansion of WGD clones, likely driven by changes in the fitness 398 

landscape that favor their proliferation. 399 

The established relationship between WGD and genomic diversification is especially evident in our 400 

data, wherein we find ubiquitous presence of minor populations that have undergone additional 401 

doublings, an increased rate of cell-specific aneuploidies post-WGD, and profoundly divergent cells 402 

for which WGD has led to extreme instability. Evolutionary analysis of our data indicates that gradual 403 

losses, rather than punctuated evolution, shape the post-WGD evolution of many WGD clones, 404 

suggesting historical adaptation and tolerance for the high CIN levels associated with WGD. While 405 

WGD was associated with increased cGAS+ ruptured micronuclei, as expected given the higher 406 

levels of CIN, prevalent WGD tumors showed decreased cell-intrinsic and cell-extrinsic interferon 407 

signaling. In Rare WGD tumors, strong correlations between CIN and tumor phenotypes were 408 

consistent with CIN-dependent G1 elongation and increased STING transcription indicating an active 409 

cGAS-STING response in Rare WGD patients. This is in contrast with Prevalent WGD, which did not 410 

exhibit CIN-associated cell cycle alterations or STING expression increases. Thus STING 411 

transcriptional repression may be a prerequisite for clonal expansion of WGD. Furthermore, given 412 

the very early timing of WGD in some patients, our results also suggest that deactivation of STING 413 

may also be an early event in the evolutionary history of some HGSOC tumors, and may predate 414 

WGD. Future investigations into therapeutic targeting of the cGAS-STING pathway should consider 415 

WGD-specific abrogation of this pathway, as well as heterogeneity in WGD states. 416 

Our results rely in part on the ability to accurately identify ploidy at single cell resolution. Several 417 

lines of evidence support the veracity of our results. As shown, many of the cells that make up the 418 

small fraction of subclonal WGD cells in each tumor are highly divergent and/or harbor homozygous 419 

regions, and would be unlikely to be either a miscalled doublet or poor quality copy number. The less 420 
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divergent cells still show copy number changes in addition to a perfect doubling, given the 421 

requirement of at least one 10MB or larger segment with copy number state 1, 3 or 5. Given the 422 

expectation that WGD should be associated with additional post-WGD instability, we were surprised 423 

to find that some of the low-prevalence and late-emerging WGD clones did not have large amounts 424 

of post-WGD copy number change. This suggests that we may in fact be underestimating the number 425 

of small WGD clones, as some of those clones may not be marked by common post-WGD changes. 426 

Individual cells that have sustained perfect doublings and non-aberrant G2 phase cells would be 427 

detected as half their true ploidy in this study. Future methods may allow isolation of these cell 428 

populations, providing further insight into the dynamics of WGD. 429 

Critically, we show that potentially targetable therapeutic vulnerabilities such as high-level oncogene 430 

amplification preferentially occur on a WGD background, and therefore arise in the context of a low-431 

inflammation and immunosuppressive tumor microenvironment. Those tumors were primarily 432 

composed of 1×WGD and 2×WGD cells with increased immunosuppressive properties. We 433 

speculate that even if selective targeting of focal oncogene amplification39 were successful, 434 

immunosuppressive states may persist. As therapeutic stratification of patients by genomic 435 

properties gains traction in HGSOC, our data introduces a critical covariate given that nearly every 436 

tumor harbors WGD cells and multiple co-existent WGD states. Even with the modest cohort size 437 

presented here, we anticipate that studying how expanded WGD clones intersect with homologous 438 

recombination deficiency and impact responsiveness to anti-angiogenic therapies such as 439 

bevacizumab, will advance the rational administration of therapeutic strategies for HGSOC40,41. 440 

Moreover, targeting the WGD process itself may be required to prevent emergence of newly acquired 441 

WGD clones. The relevance of our findings to other tumor types remains unclear, although breast 442 

PDX11, in vitro10 and pancreatic cancer mouse42 studies suggest that WGD dynamics may be 443 

pervasive across TP53 mutant cancers with implications for diverse mechanisms of therapeutic 444 

resistance43. Thus studying the role of WGD throughout the life history of a tumor should be 445 

prioritized as a determinant of therapeutic response. 446 

Data availability 447 

Publicly accessible and controlled access data generated and analyzed in this study are documented 448 

in Synapse (accession number syn25569736). Raw sequencing data for scWGS data will be 449 

available from the NCBI Sequence Read Archive prior to publication. 10x 3’ scRNA-seq is available 450 

from the NCBI Gene Expression Omnibus (accession number GSE180661). scWGS copy number 451 

heatmaps can be visualized on Synapse 452 

(https://www.synapse.org/#!Synapse:syn51769919/datasets/). In addition, MEDICC2 trees and 453 

SBMClone results are provided as supplementary file spectrum-trees.html. IF images will be 454 

available from Synapse prior to publication. 455 
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Code availability 456 

The pipeline to process DLP+ scWGS is available at https://github.com/mondrian-scwgs. SIGNALS11 457 

was used for most plotting and scWGS analysis and is available at 458 

https://github.com/shahcompbio/signals. doubleTime is available at 459 

https://github.com/shahcompbio/doubleTime. 460 
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METHODS 667 

Experimental methods 668 

Sample collection 669 

All enrolled patients were consented to an institutional biospecimen banking protocol and MSK-670 

IMPACT testing44, and all analyses were performed per a biospecimen research protocol. All 671 

protocols were approved by the Institutional Review Board (IRB) of Memorial Sloan Kettering Cancer 672 

Center. Patients were consented following the IRB-approved standard operating procedures for 673 

informed consent. Written informed consent was obtained from all patients before conducting any 674 

study-related procedures. The study was conducted in accordance with the Declaration of Helsinki 675 

and the Good Clinical Practice guidelines (GCP). 676 

We collected fresh tumor tissues from 40 HGSOC patients at the time of upfront diagnostic 677 

laparoscopic or debulking surgery. Ascites and tumor tissue from multiple metastatic sites, including 678 

bilateral adnexa, omentum, pelvic peritoneum, bilateral upper quadrants, and bowel were procured 679 

in a predetermined, systemic fashion (median of 4 primary and metastatic tissues per patient) and 680 

were placed in cold RPMI for immediate processing. Blood samples were collected pre-surgery for 681 

the isolation of peripheral blood mononucleated cells (PBMCs) for normal whole-genome 682 

sequencing (WGS). The isolated cells were frozen and stored at -80°C. In addition, tissue was snap 683 

frozen for bulk DNA extraction and tumor WGS. Tissue was also subjected to formalin fixation and 684 

paraffin-embedding (FFPE) for histologic, immunohistochemical and multiplex immunophenotypic 685 

characterization. 686 

Sample processing 687 

We profiled patient samples using five different experimental assays: 688 

1. Viably frozen single-cell suspensions were derived from fresh tissue samples and processed 689 

for single-cell whole-genome sequencing (scWGS) of 65 sites from 40 patients (~815 cells 690 

per site, Supp. Tab. 2). CD45- cells were flow-sorted in samples with low tumor purity. 691 

2. CD45+ and CD45- flow-sorted cells were previously reported fresh tissue samples and 692 

processed for single-cell RNA sequencing (scRNA-seq) of 123 sites from 32 patients (~6k 693 

cells per site, Supp. Tab. 2). 694 

3. For each specimen with scRNA-seq, site-matched FFPE tissue sections adjacent to the H&E 695 

section were stained by multiplexed immunofluorescence (IF) for micronuclei and DNA 696 

sensing mechanisms (83 tissue samples from 37 patients). 697 
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4. FDA-approved clinical sequencing of 468 cancer genes (MSK-IMPACT) was obtained on 698 

DNA extracted from FFPE tumor and matched normal blood specimens for each patient 699 

(Extended Data Fig. 1B). 700 

5. Snap-frozen tissues were processed to obtain matched tumor-normal bulk whole-genome 701 

sequencing (WGS) on a single representative site of 33 out of 40 patients with scWGS, 702 

scRNA-seq and IF, to derive mutational processes from genome-wide single nucleotide and 703 

structural variants.  704 

Single-cell DNA sequencing 705 

Tissue dissociation 706 

Tumor tissue was immediately processed for tissue dissociation. Fresh tissue was cut into 1 mm 707 

pieces and dissociated at 37°C using the Human Tumor Dissociation Kit (Miltenyi Biotec) on a 708 

gentleMACS Octo Dissociator. After dissociation, single-cell suspensions were filtered and washed 709 

with Ammonium-Chloride-Potassium (ACK) Lysing Buffer. Cells were stained with Trypan Blue and 710 

cell counts and viability were assessed using the Countess II Automated Cell Counter 711 

(ThermoFisher). For detailed protocol see Bykov et al., 202045. Freshly dissociated cells were 712 

processed for scRNA-seq as described in Vázquez-García et al., 202214. Viably frozen dissociated 713 

cells were stored for scWGS. 714 

Cell sorting 715 

Viably frozen dissociated cells used for scWGS were thawed and then stained with a mixture of 716 

GhostRed780 live/dead marker (TonBo Biosciences) and Human TruStain FcX™ Fc Receptor 717 

Blocking Solution (BioLegend). For samples with low tumor purity, the stained samples were then 718 

optionally incubated and stained with Alexa Fluor® 700 anti-human CD45 Antibody (BioLegend). 719 

Post staining, they were washed and resuspended in RPMI + 2% FCS and submitted for cell sorting. 720 

The cells were sorted into CD45 positive and negative fractions by fluorescence assisted cell sorting 721 

(FACS) on a BD FACSAria™ III flow cytometer (BD Biosciences). Positive and negative controls 722 

were prepared and used to set up compensations on the flow cytometer. Cells were sorted into tubes 723 

containing RPMI + 2% FCS for sequencing. 724 

Library preparation and sequencing 725 

Single-cell whole-genome library preparation was carried out as described in Laks et al., 201916. 726 

Briefly, single cells were dispensed into nanowells with protease (Qiagen) and DirectPCR Cell lysis 727 

reagent (Viagen). After overnight incubation cells are subjected to heat lysis and protease 728 

inactivation followed by tagmentation in a tagmentation mix (14.335 nL TD Buffer, 3.5 nL TDE1, and 729 
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0.165 nL 10% Tween-20) at 55°C for 10 minutes. Once the tagmentation reaction was neutralized, 730 

8 cycles of PCR followed. The indexed single-cell libraries were recovered from the nanowells by 731 

centrifugation into a pool and sequenced on Illumina NovaSeq 6000. 732 

Immunofluorescence 733 

Overview 734 

We profiled matched FFPE tissues with cGAS and DAPI immunofluorescence to quantify the rate of 735 

micronuclei formation in tumors. The immunofluorescence detection of cGas was performed at the 736 

Molecular Cytology Core Facility of Memorial Sloan Kettering Cancer Center using Discovery XT 737 

processor (Ventana Medical Systems.Roche-AZ). Antigen retrieval was performed using ULTRA 738 

Cell Conditioning (Ventana Medical Systems, 950-224). The tissue sections were blocked first for 30 739 

minutes in Background Blocking reagent (Innovex, catalog#: NB306). 740 

Tissue staining 741 

For the cGAS staining, a mouse monoclonal cGAS antibody (LSBio, LS-C757990) was used in 1:200 742 

dilution. The incubation with the primary antibody is done for 5 hours followed by biotinylated mouse 743 

secondary (Vector Labs, MOM Kit BMK-2202) in 5.75μg/mL. Blocker D, Streptavidin- HRP and TSA 744 

Alexa594 (Life Tech, cat#B40957) was applied for 16 minutes. 745 

All slides were counterstained in 5μg/mL DAPI (Sigma D9542) for 5 minutes at room temperature, 746 

mounted with anti-fade mounting medium Mowiol. 747 

RPE1 cell line experiments 748 

We explored the phenotypic effects of chromosomal instability and WGD in TP53-knockout RPE1 749 

cells. TP53-knockout RPE-1 was a gift from the Maciejowski laboratory at the Memorial Sloan 750 

Kettering Cancer Center (MSKCC). RPE-1 cells were cultured in DMEM (Corning) supplemented 751 

with 10% fetal bovine serum (Sigma-Aldrich), 1% penicillin-streptomycin (Thermo Fisher) at 37°C 752 

and 5% CO2. All cells were periodically tested for mycoplasma contamination. 753 

TP53-/- RPE1 cells were treated with nocodazole, reversine and DMSO control to induce varying 754 

levels of chromosomal instability, then subject to both 10X multiome sequencing and DLP+ scWGS. 755 

For nocodazole treatment, RPE-1 cells were seeded at 20% confluence at the time of nocadazole 756 

addition. Cells were treated with 100 ng/ml nocodazole (Sigma-Aldrich) or DMSO for 8hrs. After 8hrs, 757 

cells were treated with three washes with phosphate buffered saline to remove the drug. After 48hrs 758 

the cells were collected. For reversine (Cayman Chemical Company) treatment, cells were treated 759 

at a concentration of 0.5 µM reversine for 48hrs. After 48hrs, cells were washed with three washes 760 
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with phosphate buffered saline to remove the drug. Cells were collected after 12hrs. 10,000 cells per 761 

condition were collected for 10X Chromium Single Cell Multiome ATAC+Gene Expression according 762 

to the manufacturer's protocol. Library preparation and sequencing were performed in MSKCC 763 

Integrated Genomics Core. 1M cells per condition were subject to DLP+ as described above. 764 

A spontaneously arising WGD subclone was observed as a minor population of the TP53-knockout 765 

RPE1 cells (Extended Data Fig. 6E). After 30 additional passages (sample RPE-WGD), the WGD 766 

subclone, as measured by DLP+, comprised 37% of the population, presenting the opportunity to 767 

explore phenotypic differences between WGD and non-WGD cells. Sample RPE-WGD was subject 768 

to DLP+ scWGS and 10X scRNA. 769 

Sample Treatment Sequencing Description 

RPE-D DMSO 10X Multiome/DLP+ non-WGD, low CIN control 

RPE-Noco Nocodazole 10X Multiome/DLP+ non-WGD, medium CIN 

RPE-Rev Reversine 10X Multiome/DLP+ non-WGD, high CIN 

RPE-WGD None 10X scRNA/DLP+ WGD/non-WGD mixed population 

Computational methods 770 

Computational analyses of multi-modal datasets were enabled by the Isabl platform46. 771 

Single-cell DNA sequencing 772 

Overview 773 

The single-cell DNA analysis pipeline is a suite of workflows for analyzing the single-cell data 774 

generated by the DLP+ platform16. The workflow takes dual-indexed reads from Illumina paired-end 775 

sequencing data as the input and performs various alignment and postprocessing tasks. The pipeline 776 

is publicly available on GitHub (https://github.com/mondrian-scwgs/mondrian), which we run within 777 

the Isabl framework46. 778 

Alignment 779 

We use Trim Galore to remove adapters and FastQC to generate QC reports before running 780 

alignment. The reads are then aligned with bwa-mem (with support for bwa-aln). The pipeline can 781 

also perform local indel realignment with GATK’s IndelAligner if required. PCR duplicates are marked 782 

using Picard MarkDuplicates and alignment metrics are computed for each cell with Picard tools 783 

CollectWgsMetrics and CollectInsertSizeMetrics. The pipeline also generates plots for each 784 

alignment metric for a quick overview. 785 
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Copy number segmentation 786 

Reads are tabulated for non-overlapping 500 kb regions. A modal regression normalization16 is 787 

performed to reduce GC bias. The pipeline then runs HMMcopy with 6 different ploidy settings and 788 

the best fit is chosen automatically47. The pipeline also generates heatmaps with cell clustering, per-789 

cell copy-number profile and the modal regression fit for visualization. 790 

Quality control 791 

scWGS was first subjected to quality control and filtering to remove non-cancer cells, S-phase 792 

replicating cells, low quality cells, and doublets, resulting in 29,481 high-quality cancer cell genomes 793 

(Extended Data Fig. 2C-D). The quality control pipeline compiles the results from the total copy 794 

number analysis and alignment, and we then use a random forest classifier to predict the quality of 795 

each cell based on the alignment and HMMcopy metrics16. We then inferred allele-specific copy 796 

number for each of these cells using SIGNALS11. Patient level average ploidy ranged from 1.6 to 4.5, 797 

and LOH ranged from 0.2 to 0.8. Ploidy and LOH estimates were concordant with matching bulk 798 

WGS and clinical panel sequencing by MSK-IMPACT, and losses and gains from scWGS coincided 799 

with known drivers of HGSOC (Extended Data Fig. 2E-G). Thus at a pseudobulk level, the genomic 800 

characteristics of our scWGS cohort matched those of both whole-genome and targeted bulk data. 801 

Haplotype-specific copy number 802 

In a matched normal sample we measure reference and alternate allele counts for SNPs from the 803 

1000 Genomes Phase 2 reference panel. We use a binomial exact test to filter for SNPs 804 

heterozygous in the normal sample. Using SHAPEIT48 and the 1000 Genomes Phase 2 reference 805 

panel, we compute haplotype blocks. Next we measure per-cell reference and alternate allele counts 806 

for heterozygous SNPs in the tumor scWGS data. 807 

Cell filtering 808 

We established stringent filters to maximize the removal of problematic cells without sacrificing 809 

sensitivity to rare interesting populations including those representing cell specific WGD. 810 

Removal of low-quality cells 811 

We removed cells with quality score <0.75. The quality score was computed using the classifier 812 

presented in Laks et al., 201916. 813 
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Removal of suspect high-ploidy cells 814 

We restricted analysis to cells with high confidence ploidy calls. Absolute ploidy is unidentifiable from 815 

the sequencing data of an individual cell, thus we take a parsimony approach and assume the true 816 

ploidy to be the lowest ploidy value that provides a reasonable fit to the data. One failure mode in 817 

the automatic determination of ploidy by HMMCopy occurs when HMMCopy converges on a solution 818 

with double the true ploidy driven by the overfitting of isolated outlier bins. Such cells are 819 

characterized by mostly even copy number states except for isolated bins with odd copy number. To 820 

remove such potential artifacts we required there to be at least one segment >10MB in length with 821 

copy number 1, 3 or 5. Cells with no segment >10MB in length with copy number 1, 3, or 5 were 822 

removed from further analysis. 823 

Removal of doublets 824 

We applied several orthogonal approaches to remove doublets from the DLP data. First, under the 825 

assumption that chromosome 17 LOH should be clonal in ovarian cancer, we removed tumor cells 826 

that lacked LOH of chromosome 17. Then, we used a combination of mutation-based features to 827 

manually identify tumor-normal doublets, including LOH (much lower than typical tumor cells), 828 

proportion of SNVs with alternate reads (higher than typical normal cells), and copy-number profiles 829 

that were similar to tumor cells with the addition of 2 copies across the genome. Finally, 2 raters 830 

separately reviewed the brightfield image of each cell in the clear microfluidic nozzle prior to 831 

deposition in the microwell array for sequencing, and flagged any images that appeared to contain 832 

more than 1 cell. Any cell whose image was flagged by at least 1 reviewer was removed from 833 

analysis. Additional details on these approaches are described in the Supplementary Note. 834 

Removal of S-phase cells 835 

It is necessary to remove S-phase cells before downstream analysis as the observed HMMcopy 836 

profiles of these cells reflect a mixture of both somatic (heritable) copy number and transient doubling 837 

of replicated genomic loci. We nominated S-phase cells through a combination of features known to 838 

correlate with S-phase cells. As we aimed to isolate the high-quality G1/2-phase cells for downstream 839 

analysis, we did not need to distinguish between S-phase cells and low quality cells (i.e. noisy 840 

HMMcopy profiles due to other factors such as under-tagmentation prior to sequencing or incomplete 841 

cell lysis). 842 

We first computed the following three features for each cell: 843 
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1) The Spearman correlation between HMMcopy state profile for a cell-of-interest and the RepliSeq 844 

replication timing profile from MCF-7 cells. S-phase cells will have higher correlations than G1/2-845 

phase cells. 846 

2) The number of HMMcopy breakpoints per cell (number of adjacent loci with different integer copy 847 

number state). S-phase cells have more breakpoints than G1/2-phase cells. 848 

3) The median breakpoint prevalence across all HMMcopy breakpoints. This statistic is calculated 849 

by first computing the mean prevalence of each breakpoint across all cells belonging to said patient. 850 

Then, for each cell-of-interest, we subset to only the genomic loci with detected breakpoints in that 851 

cell and calculate the median of the mean breakpoint prevalences for said loci. S-phase cells have 852 

low median breakpoint frequency scores as they have lots of rare breakpoints. 853 

All three features varied widely across patients due to each patient’s unique number, positioning, 854 

and heterogeneity of somatic copy number alteration. Thus we employed a strategy of examining 855 

each feature’s distribution across all cells in a patient, manually inspecting outlier cells, and selecting 856 

custom thresholds for each patient. We employ a filtering approach whereby cells are called as S-857 

phase if any two of the three features are beyond the threshold. This conservative strategy ensures 858 

that all remaining cells are truly in G1/2-phase and therefore have HMMcopy profiles that accurately 859 

reflect somatic copy number. 860 

Removal of normal cells 861 

After copy number calling, we identified normal cells as those cells with copy number state average 862 

between 1.95 and 2.05 and standard deviation less than 0.5. We removed these normal cells from 863 

further analysis. We also manually inspected cells with aneuploidy slightly outside this range but 864 

much less than tumor cells in the same sample, and removed these “aberrant normal” cells (see 865 

Supplementary Note for examples). These cells typically did not share SNVs with the tumor cells 866 

and may correspond to other epithelial cells affected by field cancerization49 or immune/stromal cells 867 

with rare chromosomal aberrations. 868 

Comparison with bulk copy number 869 

We use WGS copy number inferred by ReMixT50 to validate the average ploidy in the MSK 870 

SPECTRUM cohort. Similarly, we use IMPACT copy number inferred by FACETS51 for additional 871 

orthogonal validation. 872 

Detecting WGD in single cells using allele-specific copy number 873 

WGD events were identified in single cells based on the allele-specific copy number state previously 874 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.11.602772doi: bioRxiv preprint 

https://paperpile.com/c/60AbXa/Vlle
https://paperpile.com/c/60AbXa/5z4hA
https://paperpile.com/c/60AbXa/wLiNl
https://doi.org/10.1101/2024.07.11.602772


 

27 

described for bulk WGS18. We computed two metrics from SIGNALS results: fraction of the genome 875 

with ≥2 copies for the major allele (FM2), and fraction of the genome ≥3 copies for the major allele 876 

(FM3). Similar to results in bulk WGS, a clear separation can be seen between subpopulations using 877 

each metric (Extended Data Fig. 3H,I). We classified any cell with FM2 > 0.5 as having undergone 878 

at least 1 WGD, and any cell with FM3 > 0.5 as having undergone at least 2 WGD. 879 

Patient level WGD classifications 880 

Patients were classified as Prevalent WGD if the fraction of cells classified as 1WGD≥1 exceeded 881 

50% of the cells sequenced for that patient. The remaining patients were classified as Rare WGD. 882 

Subclonal WGD classification 883 

We classified cells within each patient as comprising a subclonal WGD subpopulation if they were 884 

predicted to have 1 more WGD than the number of WGDs for the majority population. However, for 885 

patients 081 and 125, a significant fraction of cells were predicted to be 0×WGD (>25%), with the 886 

remaining cells 1×WGD. For these patients, we considered the 1×WGD to be the subclonal WGD 887 

population. 888 

Variant calling 889 

SNV calling 890 

Since the low per-cell coverage in scWGS is insufficient to resolve variants at nucleotide resolution, 891 

we merge all the single cells together to create a pseudo-bulk genome for each library. We run the 892 

Mutect2 variant caller52 on the merged data across all libraries from each patient. We compute the 893 

reference and alternate counts for each cell at variant loci that are detected by either caller over all 894 

libraries. 895 

SV calling 896 

We employed a similar approach for breakpoint calling by creating pseudo-bulk libraries, then 897 

running deStruct53 and Lumpy54 on each library. Only consensus SVs detected by both methods 898 

were retained, where an SV from both methods were considered consensus if their coordinates were 899 

within 200 bp and their orientations matched. The SV calls were further post-processed as described 900 

in a previous study55. 901 
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Filtering somatic variant calls using evolutionary constraints 902 

Standard variant callers can produce artifactual calls on scWGS data, since its low insert sizes can 903 

result in incorrect alignments that appear to represent somatic variants. To address this, we 904 

developed a label propagation classifier to identify artifacts based on read-level features. To train 905 

this classifier, we leveraged the principle that distinct copy-number clones should not share subclonal 906 

variants to annotate high-confidence true and high-confidence artifact variants in a subset of 907 

samples. We then applied this classifier and trained it on high-confidence correct and artifactual calls 908 

based on manually labeled clones from a subset of patients, then applied it to all variants from all 909 

patients. 910 

SBMClone 911 

We applied SBMClone20 to the filtered somatic variants for each patient. SBMClone was run 10 times 912 

on each patient with different random initializations, and the solution with the highest likelihood was 913 

kept. 914 

Evolutionary histories of SNV clones using doubleTime 915 

We developed doubleTime, a method for computing evolutionary histories of the SNV clones in 916 

each patient, including accurate placement of WGD events in the clonal phylogeny of each patient. 917 

Our approach involved three major steps. First, we constructed a clonal phylogeny relating the clones 918 

identified by SBMClone. Second, we assigned WGD events to branches in the clonal phylogeny. For 919 

each pair of WGD clones, we assessed whether those clones arised from a single common WGD or 920 

two independent WGD. Given this information we were able to unambiguously assign WGD events 921 

to branches throughout each patient’s clonal phylogeny. Third, we used a probabilistic model to 922 

assign SNVs to branches of the clonal phylogeny, including assignment before and after WGD 923 

events on WGD branches. We describe each of the three steps in additional detail below. 924 

Perfect phylogenies of SNV clones 925 

We reconstructed phylogenetic trees with SBMClone clones as leaves using a binarized version of 926 

the implicit block structure inferred by SBMClone. We first computed a density matrix D where each 927 

row corresponds to a clone (i.e., cell block), each column corresponds to an SNV cluster (i.e., SNV 928 

block) and each entry 𝐷!,# contains the number of pairs (a,b) in which cell a in clone i has at least 929 

one alternate read covering SNV b in cluster j, divided by the total number of possible pairs (i.e., the 930 

size of clone i times the size of cluster j). We then computed a binary matrix B by rounding up those 931 

entries of D that exceeded a density of 0.01, removed empty columns, and attempted to infer a 932 

phylogenetic tree by applying the perfect phylogeny algorithm. Matrices B that did not permit a 933 
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perfect phylogeny were manually modified with the minimum number of changes required to permit 934 

a perfect phylogeny – this typically occurred when mutations shared between two or more clones 935 

had been lost due to a deletion in a subset of the clones. 936 

Discerning independent from shared WGD 937 

To identify cases in which sequenced WGD cells arose from distinct WGD events, we analyzed 938 

SNVs from the single-cell DNA sequencing data. Specifically, for each patient, we focused 939 

exclusively on those regions that exhibited copy-neutral loss of heterozygosity (cnLOH; i.e., major 940 

copy number 2 and minor copy number 0) among nearly all (≥ 90%) tumor cells with a single WGD. 941 

Given a candidate bipartition of the 1 WGD cells, under the infinite sites assumption, each cnLOH 942 

SNV then fits into one of the following categories: 943 

● 2 mutant copies in both clones (shared pre-WGD and pre-divergence) 944 

● 1 mutant copy in one clone (private post-divergence) 945 

● 0 mutant copies (false positive variant) 946 

● 1 mutant copy in both clones (shared post-WGD and pre-divergence) 947 

● 2 mutant copies in both clones (post-WGD and post-divergence) 948 

The last two categories of SNVs present evidence for or against multiple independent WGD events. 949 

SNVs that are shared at 1 variant copy (VAF ~0.5) would suggest that the two sets of cells underwent 950 

the same ancestral WGD event, as they share mutations that must have followed the WGD. 951 

Conversely, SNVs that are private at two variant copies (VAF ~1) would suggest that the two sets of 952 

cells underwent distinct WGD events, as they have private mutations that preceded the WGD. 953 

Specifically, we considered the following hypotheses: 954 

1. Single-WGD: Shared 1-copy SNVs are allowed, but private 2-copy SNVs are not allowed. 955 

2. Multiple-WGD: Shared 1-copy SNVs are not allowed, but private 2-copy SNVs are allowed. 956 

To evaluate the relative strength of these hypotheses, we developed a likelihood ratio test that 957 

compared the probability of observing the given variant counts for cnLOH SNVs under these two 958 

hypotheses: for each patient, we evaluated P(Multiple-WGD)/P(Single-WGD) using a simple 959 

binomial model of read counts. We then tested the significance of this likelihood ratio by generating 960 

an empirical distribution: we fixed the SNV read counts and their best-fitting variant copy numbers 961 

under the Single-WGD hypothesis and resampled alternate counts. 962 

Assigning SNVs to branches and estimating branch lengths 963 

From the previous steps, we are given a tree relating the clones detected by SBMclone. We place 964 

WGD events on branches such that all Prevalent WGD patients had a WGD event placed on the 965 
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root of the tree, except those in which independent WGD events had been identified (patients 025 966 

and 045) or WGD only affected a subset of clones (patient 081), in which case those specific events 967 

were placed further down the tree.  We used a probabilistic model to assign SNVs to branches and 968 

estimate branch lengths based on read count evidence for SNVs in each clone.  For WGD branches, 969 

the model assigns SNVs as occurring before or after the WGD, and estimates the length of the 970 

branch before and after the WGD. This strategy effectively splits each branch with a WGD event into 971 

two unique positions in the tree, meaning that the total number of positions in the tree to which an 972 

SNV can be assigned is equal to the number of branches determined by SBMclone + the number of 973 

branches with WGD events. 974 

For this analysis, we considered only those SNVs in regions where for each SBMClone clone, over 975 

80% of cells shared the same copy-number state. We further restricted analysis to SNVs in regions 976 

with allele-specific copy-number states whose multiplicity (i.e., variant copy number, or the number 977 

of copies of the genome containing the SNV) and thus expected VAF could be uniquely determined 978 

by the combination of tree placement and WGD status (i.e., whether or not the clone was affected 979 

by an ancestral WGD event). Specifically, we analyzed regions with the following copy-number states 980 

across all clones: 981 

● 1:0 in both WGD and non-WGD clones 982 

● 1:1 in both WGD and non-WGD clones 983 

● 2:0 in WGD clones, 1:0 in non-WGD clones 984 

● 2:1 in WGD clones, 1:1 in non-WGD clones 985 

● 2:2 in WGD clones, 1:1 in non-WGD clones 986 

In each of these scenarios, we assume that the WGD and copy-number events immediately following 987 

the WGD account for the differences in copy number between WGD and non-WGD clones. Note 988 

that the only patient in the cohort with different WGD status for different leaves was patient 081, so 989 

for nearly all patients we analyzed only those SNVs with clonal copy-number states (matching the 990 

above listed states depending on WGD status). The multiplicity for an SNV on a particular allele 991 

placed on a particular branch of the tree was as follows: 992 

● 0, if the corresponding allele had 0 copies 993 

● Equal to the allele-specific copy number of the allele in the clone, if the SNV occurred pre-994 

WGD and the leaf was affected by WGD 995 

● Equal to 1 otherwise 996 

Each SNV is assigned to a tree position by fitting the observed total and alternative counts of said 997 

SNV to the expected VAFs for all clones. SNVs are assigned to positions in the tree using a Dirichlet-998 

Categorical distribution, and a Beta-Binomial emission model is used to relate observed SNV counts 999 
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to expected VAFs. The model is implemented in Pyro and fit using black box variational inference56. 1000 

Note that when computing branch lengths, we only use C>T SNVs at CpG sites as these SNVs have 1001 

been reported to correspond most closely to chronological age57. 1002 

To account for the differences in genome size and copy-number heterogeneity between different 1003 

patients with varying amounts of aneuploidy, we normalize the number of C>T CpG SNVs on each 1004 

branch by the number of bases being considered. First, we computed the effective genome length 1005 

of each clone as the total size of the bins considered to be “clonal” for a valid copy-number state as 1006 

defined above, with each bin weighted by its total copy number. Then, for the internal nodes of the 1007 

tree, we assumed that the only copy-number changes to these bins were directly coupled to WGD 1008 

events. Thus, for post-WGD branches, the genome length was identical to that of the leaves; and for 1009 

pre-WGD branches, the genome length was computed using the correspondence described above 1010 

between pre- and post-WGD copy numbers. 1011 

Estimating pre- and post-WGD changes in WGD subpopulations 1012 

We use a maximum parsimony based method to estimate pre- and post-WGD changes from 1013 

estimated ancestral and descendent copy-number profiles. We proceed independently for each bin. 1014 

Let x be the ancestral copy number state and y the descendent copy number state, and assume y 1015 

is produced by a combination of pre-WGD CN change followed by WGD followed by post-WGD CN 1016 

change. We can relate x and y using, 1017 

𝑦	 = 	2(𝑥	 + 	𝑏) 	+ 	𝑎 1018 

where b represents pre-WGD CN change and a post-WGD CN change. Let the cost of any given a 1019 

and b be |𝑎| + |𝑏|. Conveniently, every combination of x and y results in a unique a and b that 1020 

minimize this cost. Thus, for each x and y we compute the associated b and a as the pre- and post-1021 

WGD changes and |𝑎| + |𝑏| as the cost of those changes. 1022 

Measures of diversity and heterogeneity 1023 

We compute the “percent genome different” for a pair of cells as follows. First, we compute the bin 1024 

level difference in total copy number and identify consecutive segments of changed and unchanged 1025 

bins. We then remove segments less than or equal to 2 MB in size (i.e., affecting fewer than four 1026 

consecutive 500-kb bins). Finally, we count the number of bins for which the two genomes have 1027 

different total copy number and divide by the total number of bins considered. 1028 
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Classification of divergent cells 1029 

We call divergent cells as outliers of the nearest neighbor distance (NND), using “percent genome 1030 

different” as the distance metric. For each index cell we compute its nearest neighbor as the other 1031 

cell in the population within minimum percent genome different. The nearest neighbor distance for 1032 

each cell is thus the percent genome different with respect to its neighbor cell. We then fit a beta 1033 

distribution to the NND values of all cells in the cohort, and call divergent cells as those cells that 1034 

have NND values in the 99th percentile of the beta distribution fit to the data. 1035 

Cell phylogenies using MEDICC2 1036 

We derived estimates of chromosome missegregation rates per cell for each patient from copy-1037 

number phylogenies inferred with MEDICC258. First, we refined single-cell haplotype-specific copy-1038 

number profiles by applying the dynamic programming formulation from asmultipcf59 on GC-1039 

corrected read counts and phased B-allele frequencies for each bin. Using this method, we identified 1040 

segment boundaries across all cells for each patient and then summarized the number of copies of 1041 

each segment and allele in each cell by rounding. Next, we ran MEDICC258 on these refined 1042 

haplotype-specific single-cell copy numbers, which infers a tree (with single cells corresponding to 1043 

leaves), copy-number profiles for the ancestral internal nodes of the tree, and copy-number events 1044 

for each branch of the tree. We used the –wgd-x2 flag for MEDICC2 which represents WGD as an 1045 

actual doubling of all copy-number segments in the genome, rather than the default behavior of 1046 

adding 1 to all segments. We then computed missegregation rates by counting the number of inferred 1047 

chromosome-/arm-level gains and losses on the terminal branches of the tree (i.e., the number of 1048 

cell-specific events) and dividing by the total number of cells in the tree. 1049 

Reconstruction of ancestral copy number 1050 

To infer the ancestral haplotype-specific copy-number profiles associated with internal nodes of the 1051 

cell phylogeny, we use a maximum parsimony approach that treats each bin independently and aims 1052 

to minimize the total number of changes on the tree. Specifically, the parsimony score for each 1053 

branch is the sum across bins and across both haplotypes of the absolute difference in copy number 1054 

between the parent and the child. Transitions from 0 to any other copy number are given a score of 1055 

infinity to prevent gain from 0 copies. The score for a WGD branch (assumed known from MEDICC2) 1056 

is the sum of two parsimony scores: the score for copy-number changes between the parent and an 1057 

intermediate genome, and the score for copy-number changes between a doubled version of the 1058 

intermediate genome and the child (this intermediate genome is described above in Estimating pre- 1059 

and post-WGD changes in WGD subpopulations). The state of each bin at each branch in the tree 1060 

is chosen to minimize this parsimony score using the Sankoff algorithm60,61. We assume that the 1061 
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MEDICC2 placement of WGD on branches of the phylogeny is correct in all but two patients: for 1062 

patients 025 and 045, we adjusted WGD placement to be concordant with SNV evidence suggesting 1063 

independent clonal origin of multiple WGD clones. 1064 

Classifying event from CN differences 1065 

Given a phylogenetic tree where both leaves and internal nodes are labeled by haplotype-specific 1066 

copy-number profiles, we identify the copy-number events on each branch using a greedy approach. 1067 

First, we identify the differences between the parent haplotype-specific copy-number profile and the 1068 

child copy-number profile. Then, for each chromosome and haplotype, we aim to explain the copy-1069 

number differences between parent and child using events that are as large as possible: 1070 

1. If more than 90% of bins in the chromosome are altered in the same direction, we call a 1071 

chromosome gain or loss that accounts for a change of one copy for all bins in the 1072 

chromosome. 1073 

2. If no chromosome gain or loss is found, but 90% of the bins in one of the two arms is altered 1074 

in the same direction, we call an arm-level gain or loss that accounts for a change of 1 copy 1075 

for all bins in the chromosome arm. 1076 

3. If no chromosome- or arm-level gain or loss is found, we call a gain or loss of the largest 1077 

contiguous segment that has a change in the same direction. 1078 

We then adjust the copy number difference by the selected event, and repeat until all copy-number 1079 

changes between parent and child have been accounted for. Note that if all but a few of the bins of 1080 

a chromosome are gained (or lost), our method will first predict a chromosome gain (or loss), then 1081 

an additional small segment loss (or gain) to account for the few bins that were predicted as 1082 

unchanged. We have selected this approach as we consider a whole chromosome (or arm) change 1083 

to be more parsimonious if most of a chromosome’s (or arm’s) bins are altered. Our approach is also 1084 

more robust to bin level noise than a strategy that requires 100% of the bins to be altered. 1085 

For branches with WGD, we compute the intermediate pre-doubling profile that would result in the 1086 

fewest copy-number changes (see Estimating pre- and post-WGD changes in WGD subpopulations 1087 

above). Using our bin-independent parsimony model, we can compute the optimal intermediate 1088 

profile analytically. We then perform the event calling procedure described above twice: once on the 1089 

differences between the parent and the intermediate pre-WGD profile, and again between the 1090 

doubled intermediate profile and the child. 1091 
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Estimating rates of cell specific events 1092 

We explored controlling for the “opportunity” for each cell to mis-segregate by dividing the number 1093 

of copy-number events for each cell by the number of chromosomes (for chromosome-level 1094 

missegregations) or arms (for arm-level missegregations) in the inferred parent node of each cell in 1095 

the tree (i.e., the source of the terminal branch). This yields a rate of missegregation events per cell 1096 

and per parental copy. For shorter “segmental” copy-number events, we divided the number of 1097 

events in each cell by its parent’s genome length to control for opportunity. While the resulting rate 1098 

is not comparable to segment- and arm-level rates, it makes the cell-specific segmental rates more 1099 

comparable between cells and across patients. 1100 

Detection of focal high-level amplifications in single cells 1101 

To detect focal high-level amplification in single cells, we used a two-stage approach compiling a set 1102 

of potential amplified segments, then re-called amplification of those segments in individual cells. 1103 

We first identified all contiguous segments with copy number exceeding 3✕ ploidy per cell. We then 1104 

merged per cell segments to generate a set of amplified segments for the patient tumor cell 1105 

population as a whole, and merged adjacent amplified segments if the boundaries of those segments 1106 

were closer than 2MB. Only amplified segments larger than 500kb (1 bin) were considered further. 1107 

Given a set of amplification segments predicted per patient, we then computed the average copy 1108 

number for each cell within each segment, as well as the average copy number for the 5MB on either 1109 

side of each segment. A focal high-level amplification was called in an individual cell if the average 1110 

copy number of the amplification segment was greater than 3✕ ploidy and greater than 3✕ the 1111 

average copy number in the boundary segments. 1112 

Enumerating events on ancestral branches 1113 

We computed gains and losses of chromosomes and chromosome arms for three classes of event 1114 

timing.  Events were classified as non-WGD if they were predicted to occur on the root branch of a 1115 

Rare WGD patient, pre-WGD if they were predicted to occur prior to the WGD event on the root 1116 

branch of a Prevalent WGD patient, and post-WGD if they were predicted to occur prior to the WGD 1117 

event on the root branch of a Prevalent WGD patient. Patients 025, 045, and 081 were omitted from 1118 

this analysis as their WGD history precludes this categorization of copy-number events. 1119 

Calculating post-WGD changes in WGD clones 1120 

We cataloged all high confidence WGD clones detected in our cohort.  This included all predicted 1121 

WGD clades with at least 20 cells in the MEDICC2 phylogenies. In addition, we included two small 1122 

WGD clones from patient 006 and 031 (Extended Data Fig. 3E-F). Counts of post-WGD events 1123 
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were calculated from ancestral reconstruction on MEDICC2 trees as described above (see section 1124 

Reconstruction of ancestral copy number). 1125 

Single-cell RNA sequencing 1126 

Cell type assignment 1127 

Using scRNA-seq of CD45+/- sorted cells we assigned major cell types using supervised clustering 1128 

with CellAssign62, as described in Vázquez-García et al., 202214. 1129 

InferCNV and scRNA-seq derived copy number clonal decomposition 1130 

InferCNV (version 1.3.5) was used for identifying large-scale copy number alterations in ovarian 1131 

cancer cells identified by CellAssign63,64. For each patient, 3,200 non-cancer cells annotated by 1132 

CellAssign were randomly sampled from the cohort and used as the set of reference “normal” cells. 1133 

After subtracting out reference expressions in non-cancer cells, chromosome-level smoothing, and 1134 

de-noising, we derived a processed expression matrix which represents copy number signals. 1135 

Cancer cell subclusters are identified by ward.D2 hierarchical clustering and “random_trees” partition 1136 

method using p-value < 0.05. 1137 

WGD classification 1138 

Identification of WGD cells from scRNA data is technically challenging, as inferred copy number from 1139 

expression data is typically noisy, allele-specific markers are sparse, and as shown in our scWGS 1140 

analysis, the prevalence of non WGD cells in Prevalent WGD cases, and WGD cells in Rare WGD 1141 

cases is generally low, confounding identification of non-clonal ploidy populations within samples. 1142 

We reasoned that due to the high concordance between scWGS and scRNA derived copy number, 1143 

even between non site-matched patient samples (Extended Data Fig. 5A), and the typically clonal 1144 

nature of WGD, WGD status could be propagated to all available patient matched scRNA samples 1145 

for the purposes of transcriptional phenotyping analysis. Furthermore, within-sample absolute 1146 

normalization of UMI counts between tumor and non-tumor cells showed a significant increase in 1147 

overall transcript counts per cell in Prevalent versus Rare WGD patients (Extended Data Fig. 5B), 1148 

which was highly concordant with established estimates of transcriptional changes in WGD versus 1149 

non-WGD samples in bulk RNA65. Thus, we concluded that site-matched scRNA data effectively 1150 

captures WGD transcriptional phenotypes. Any analyses correlating scWGS derived missegregation 1151 

rates to transcriptional phenotypes were restricted to site matched samples with at least 20 cells in 1152 

both DLP and scRNA. 1153 
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Cell cycle analysis 1154 

We identified circular trajectories linked to cell cycle progression in cancer cells using Cyclum28. 1155 

Across the cohort, 10,000 cancer cells annotated by CellAssign were randomly sampled across 1156 

tumors and used for cell cycle trajectory inference. Pseudotime inference was run on the scaled cell-1157 

by-gene matrix, limiting genes to cell cycle markers included in cell cycle GO terms (GO:0007049). 1158 

Discretization of the continuous pseudotime trajectories was accomplished using a three-component 1159 

Gaussian mixture model. Discrete cell cycle phase information was computed using Seurat’s 1160 

CellCycleScoring function, excluding samples with fewer than 20 malignant cells. Smoothed 1161 

pseudotime trajectories of cell cycle-related genes previously reported in the literature66 were then 1162 

evaluated to interpret phase-specific gene activity and phase transitions as a function of pseudotime 1163 

(Fig. 5D). 1164 

Differential gene and pathway activity 1165 

Pathways were curated from the single-cell hallmark metaprograms67, the 50 hallmark pathways68, 1166 

or CIN-associated gene signatures manually curated from literature, including inflammatory signaling 1167 

and ER stress31,38, and scored in single cells using Seurat’s ‘AddModuleScore’ function. Due to the 1168 

hierarchical nature of the data, with multiple samples from patients, we used generalized estimating 1169 

equations (GEE) on sample mean gene or pathway expression levels, adding tumor site (adnexa vs 1170 

non-adnexa) as a covariate in the model, and restricting analysis to samples with at least 20 cells in 1171 

order to compare WGD states. P-values were adjusted for multiple testing using FDR. In parallel, we 1172 

also performed differential expression analysis using a pseudobulked generalized linear mixed 1173 

model (DREAMLET69), accounting for random patient and fixed tumor site effects, and performed 1174 

gene set enrichment analysis (GSEA) with the same set of pathways. 1175 

Differential cell type abundance 1176 

To determine cell populations that were differentially abundant between rare WGD and prevalent 1177 

WGD samples we utilized miloR v1.8.170, setting ‘prop’ to 0.2, and using ‘tumor_megasite’ (adnexa 1178 

vs non-adnexa) as a contrast in the differential abundance testing. To obtain significance values for 1179 

each cell population, we ran permutation tests by swapping the sample WGD status labels 1,000 1180 

times, and computing the proportion of tests in which the resulting non-permuted median log2-fold 1181 

change was more extreme than the permuted median values for each cell type. 1182 
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Immunofluorescence 1183 

Regions of interest 1184 

We defined regions of interest (ROIs) containing tumor on IF images by delineating regions with 1185 

tumor foci, and contrasting these with images of the IF-adjacent H&E section. ROI annotations were 1186 

drawn in QuPath. To ensure that complex tissue regions within ROIs used for analysis only included 1187 

tumor, we classified regions of tumor, stroma, vasculature and glass within each ROI. We trained a 1188 

pixel classifier with examples of tumor, stroma, vasculature and glass from each of the ROIs and 1189 

slides using the IF-adjacent H&E section. 1190 

Segmentation of primary nuclei and micronuclei 1191 

Whole-slide IF images stained with cGAS, ENPP1 and DAPI were analyzed to characterize primary 1192 

nuclei (PN) and micronuclei (MN) within ROIs. Segmentation of PN was carried out in QuPath v0.3.0 1193 

using the StarDist algorithm on the DAPI channel71. We used a segmentation model pre-trained on 1194 

single-channel DAPI images (“dsb2018_heavy_augment.pb”). Applying the PN segmentation model 1195 

across all ROIs yielded 1,779,351 PN in tumor regions. Segmented PN ranged between 5 μm2 and 1196 

100 μm2 in size, with a minimum fluorescence intensity of 1 a.u. The cell membrane for each PN 1197 

was approximated using a cell expansion of 3 μm of the nuclear boundary. 1198 

Micronuclei were detected by StarDist segmentation of cGAS spots. We trained a new segmentation 1199 

model on single-channel cGAS images using a U-Net architecture. We manually annotated cGAS+ 1200 

MN in a set of 256px x 256px tiles encompassing tumor regions across all slides. We created training 1201 

and test sets using a 70:30 split, resulting in a training set of 70 tiles and a test set of 30 tiles. To 1202 

ensure that the model generalized across patients and samples, we applied augmentation to the 1203 

training set by applying random rotations, flips, and intensity changes. We monitored the loss 1204 

function during model training and saved the trained model with frozen weights. 1205 

This allows for whole slide quantification and cell-level annotation of PN and MN. Nuclear 1206 

segmentation was also carried out using StarDist on the DAPI channel. Each MN was assigned to 1207 

the closest PN.  MN were excluded if they were >10μm from the centroid of the closest nucleus, had 1208 

area >10μm2 or probability <0.75.   1209 

Validation of micronuclei segmentation  1210 

We have evaluated our method on a test dataset with held-out MN labels, showing good performance 1211 

of predicted MN segmentations with high average precision and F1 scores (IoU < 0.5). We 1212 

quantitatively evaluated the segmentation performance on the test data by considering cGAS+ MN 1213 

objects in the ground truth to be correctly matched if there are predicted objects with overlap. We 1214 
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used the intersection-over-union (IoU) as an overlap criterion, demonstrating good performance with 1215 

a chosen IoU threshold > 0.5. 1216 

Micronuclei rates 1217 

Micronucleus rupture rates were estimated based on the number of cGAS+ MN and PN segmented 1218 

within tumor ROIs. The rate of micronuclei rupture was estimated by localization of cGAS+ MN 1219 

neighboring PN. MN rate was calculated as the fraction of PN with 1 or more MN. Applying the MN 1220 

segmentation model across all ROIs yielded 83,352 cGAS+ MN in tumor regions, with a mean MN 1221 

area of 2 μm2, ranging between 1 μm2 and 10 μm2, and a minimum object probability of 0.75.  To 1222 

overcome batch effects, we used within-batch MN rate Z-score for downstream comparisons. 1223 

Statistical comparisons of micronuclei rates 1224 

For comparing MN rate between prevalent and rare WGD, we used generalized estimating equations 1225 

(GEE). We used binary Prevalent vs Rare WGD as the dependent variable with binomial distribution 1226 

and Z-score MN rate as the independent variable, adding patient as a group variable in the model. 1227 

Reported effect size of WGD was calculated from the coefficient of Z-score MN rate in the learned 1228 

model. For correlation between gain and loss rates and MN rate, we used a mixed linear model with 1229 

Z-score MN rate as the dependent variable, gain or loss rate as the independent variable, and patient 1230 

as a group variable. 1231 

Multi-modal sample matching 1232 

For integrative genotype-phenotype analyses, we utilized scRNA-seq data patient-matched with 1233 

scWGS to profile cell type-specific abundance and gene/pathway activity changes in the context of 1234 

WGD (Figure 6). Given the clonally dominant nature of each sample’s WGD status, we reasoned 1235 

that tumor cells identified in scRNA-seq within each patient would likewise be mostly clonal WGD or 1236 

not, allowing for direct comparisons across all tumor cells in each patient. Indeed, site-matched 1237 

scWGS and scRNA-seq derived estimates of copy number were highly concordant (Extended Data 1238 

Fig. 6A), with UMI count ratios between tumor and normal cells being significantly elevated in 1239 

Prevalent WGD compared to Rare WGD cases as expected (Extended Data Fig. 6B). 1240 

Mutational signatures 1241 

We analyzed mutational signatures by integrating SNVs and structural variations detected by either 1242 

bulk WGS or scWGS in a unified probabilistic approach called multi-modal correlated topic models 1243 

(MMCTM)15. 1244 
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For bulk WGS samples, we obtained signature labels in the MSK SPECTRUM cohort (n=40) using 1245 

MMCTM, as presented in Vázquez-García et al., 202214. Mutational signatures for cases without 1246 

bulk WGS data were assigned based on mutational signatures inferred from scWGS. For scWGS 1247 

samples, we obtained signature labels in the MSK SPECTRUM cohort (n=40) using a ridge classifier 1248 

with default regularization strength (α=1.0). This classifier was trained on the integrated SNV and 1249 

SV signature probabilities, which were obtained using MMCTM11 from HGSOC bulk whole genomes 1250 

(n=170)11. 1251 

Consensus mutational signatures were preferentially derived based on: (i) MMCTM signatures 1252 

derived from bulk WGS, and (ii) MMCTM signatures from scWGS. Mutational signatures for cases 1253 

without bulk WGS data (006, 044, 046, 071) or inconclusive bulk WGS assignments (004, 045, 080, 1254 

081) were resolved based on scWGS. 1255 

Analysis of RPE1 cell line experiments 1256 

10X scRNA pre-processing 1257 

Raw 10X sequencing data were aligned using CellRanger (version 7.0.0), which also performed 1258 

barcode filtering and unique molecular identifier (UMI) gene counting using the 10X GRCh38 1259 

reference transcriptome.  1260 

10X Multiome pre-processing 1261 

Raw 10X sequencing data were aligned to the 10X GRCh38 reference transcriptome using 1262 

CellRanger ARC (version 2.0.2). CellRanger ARC also performed barcode filtering and unique 1263 

molecular identifier (UMI) gene counting to generate feature-barcode matrices for both RNA and 1264 

ATAC modalities. 1265 

scATAC copy number analysis 1266 

Copy number was inferred from the scATAC component of the 10X multiome data for RPE-D, RPE-1267 

Noco and RPE-Rev samples. Blacklist filtered fragments were first counted in 10MB genome bins. 1268 

Bins with GC content of less than 30% were removed prior to performing GC correction using modal 1269 

regression16. Cells with more than 5% of their bins containing NA values after GC modal correction 1270 

were removed from subsequent analysis. GC corrected counts were smoothed using the DNACopy 1271 

R package (v1.73.0) ‘smooth.CNA’ function, setting ‘smooth.region’=4. Smoothed counts were 1272 

mean-normalized per cell prior to clustering using Seurat (v5)72. For visualization, mean-normalized 1273 

and smoothed counts were scaled binwise to emphasize copy differences between clusters. 1274 
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scRNA copy number analysis 1275 

Copy number was inferred from 10X scRNA for the RPE-WGD sample using Numbat (v1.4.0)73 to 1276 

preprocess and smooth expression counts . Smoothed counts were then rebinned to 500Kb, bins, 1277 

reduced to 50 dimensions by PCA, and then clustered using Leiden clustering at 1.0 resolution on a 1278 

SNN graph. 1279 

Identification of WGD subclones 1280 

A spontaneously arising WGD subclone was observed in all DLP+ samples, characterized by gain 1281 

of 1p and loss of 1q, 2q, 4q and 21 (Extended Data Fig. 6E). The same WGD clone was evident 1282 

copy number inferred from both scATAC for RPE-D, RPE-Noco and RPE-Rev (Extended Data Fig. 1283 

6D) and scRNA for RPE-WGD (Extended Data Fig. 6I). For RPE-D, RPE-Noco and RPE-Rev, our 1284 

aim was to characterize the phenotypic impact of CIN in non-WGD cells. Thus we excluded scRNA 1285 

cells in the scATAC inferred WGD cluster from further analysis. For RPE-WGD we aimed to 1286 

characterize the phenotypic differences between WGD and non-WGD cells. We thus used the 1287 

scRNA based copy number clusters to label cells as either WGD or non-WGD in that sample. 1288 

Estimating rates of cell specific events from DLP+ 1289 

We inferred cell-specific rates of copy number change from DLP+ data using similar methods to 1290 

those applied to the patient data. We first removed low quality and cycling cells as described above. 1291 

For RPE-D, RPE-Noco and RPE-Rev we removed cells with ploidy > 2.5, thereby removing the WGD 1292 

clone and other WGD cells. We then used MEDICC2 to infer a phylogeny independently for each 1293 

sample, computed cell specific changes and classified those changes into chromosome, arm, and 1294 

segment as described above.  1295 
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FIGURES 1296 

Figure 1 Whole-genome doubling is a dynamic mutational process 

Figure 2 Evolutionary timing of WGD events from single nucleotide variants 

Figure 3 Impact of WGD on rates of chromosomal instability at single-cell 

resolution 

Figure 4 Modes of evolution post WGD 

Figure 5  Cell cycle progression in the context of whole genome doubling 

Figure 6 Tumor cell phenotypes and microenvironment remodeling in the 

context of whole genome doubling 

Extended Data Figure 1  Study and cohort overview 

Extended Data Figure 2  Quality control of scWGS data and WGD inference 

Extended Data Figure 3 Non-WGD subclones and subclonal WGD 

Extended Data Figure 4 Single cell measurements of chromosomal instability 

Extended Data Figure 5 Cell cycle progression in the context of whole genome doubling 

Extended Data Figure 6 Tumor cell phenotypes and microenvironment remodeling in the 

context of whole genome doubling 
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Figure 1. Whole genome doubling is a dynamic mutational process 1298 

A. Overview of the MSK SPECTRUM cohort and specimen collection workflow. 1299 

B. Study design for analyzing cellular ploidy and WGD in single cells using scWGS with the DLP+ 1300 

protocol. Right-hand plot shows classification of WGD multiplicity in cancer cells (# WGD=0, 1, or 2) 1301 

using fraction of the genome with major CN ≥ 2 (x-axis) vs mean allele CN difference (y-axis). 1302 

C. Heatmap of total (left) and allele specific (right) copy number for patient 045, with predicted #WGD 1303 

and site of resection for each cell annotated. The dominant 1×WGD population was downsampled 1304 

from 1,857 to 200 cells, and the full 0×WGD and 2×WGD populations numbering 18 and 44 cells 1305 

respectively are shown. 1306 

D-F. Example 0×WGD, 1×WGD, and 2×WGD cells from patient 045. 1307 

G. Distribution of cell ploidy (middle y-axis) of individual cells for each tumor, colored by # WGD. Age 1308 

at diagnosis, mutation signature, BRCA1/2 mutation status, and WGD class are annotated at top; % 1309 

WGD and number of cells per patient are annotated at bottom. 1310 
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Figure 2. Evolutionary timing of WGD events from single nucleotide variants 1312 

A. Schematic of the approach for timing WGDs in SNV clones. SBMClone is used to infer clones 1313 

based on SNVs, and a phylogeny is constructed from presence/absence patterns of SNVs across 1314 

SNV clones (left). For each pair of WGD clones, independence of the WGD is determined through 1315 

analysis of the SNV VAF in clonal cnLOH regions (center). Predictions of independent vs common 1316 

WGD are used to place WGD events in the tree.  A probabilistic method is used to assign SNVs to 1317 

the tree including placing SNVs before or after WGD events (right). The method models the 1318 

relationship between depth of coverage and SNV sensitivity to account for clones of differing size. 1319 

B-D. Clone phylogenies for the 39 patients for which the SNV based method could be applied.  1320 

Length of branches show the number of age-associated SNVs (C to T at CpG) assigned to each 1321 

branch, adjusted for coverage-depth-related reduction in SNV sensitivity. Clone sizes as a fraction 1322 

of the patient’s total sequenced cells are shown by the size of the triangle for each leaf. Clonal WGD 1323 

events are represented as orange triangles at the predicted location along WGD branches, and 1324 

branches are colored according to the number of WGD at that point in the evolutionary history. The 1325 

fractions of each clone with each #WGD state and from each sampled site are shown below each 1326 

clone tree.  Each patient is annotated with mutation signature and age at diagnosis. 1327 

E. Histogram and rug plot showing the sensitivity-adjusted age-associated SNV count for WGD and 1328 

diagnosis events for rare WGD (top) and prevalent WGD (bottom) patients. 1329 

F. Fraction of +1 WGD cells within each clone (x axis) and log binomial p-value for the test that a 1330 

clone has a greater fraction of +1 WGD cells than the overall +1 WGD fraction for the patient. 1331 
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Figure 3: Impact of WGD on rates of chromosomal instability at single-cell resolution 1333 

A. Divergence as measured by nearest neighbor distance, where distance is represented as the 1334 

fraction of the genome with different CN. NND is calculated for each population of cells within each 1335 

patient.  Boxplots show the mean NND for each WGD population within each patient. 1336 

B. QQ plot of a beta fit (x-axis) vs empirical (y-axis) quantiles of NND values for all cells in the cohort. 1337 

Divergent cells, defined as outliers (>99 percentile) of the beta distribution, are shown in red. 1338 

C. CN profile of an example divergent cell from patient 004 (top) compared to pseudobulk CN of all 1339 

cells for that patient (bottom). Shaded regions show differences between cell and pseudobulk CN. 1340 

D. Fraction of divergent cells in Rare vs Prevalent WGD patients. 1341 

E. Method for computing cell specific events in non-divergent cells. 1342 

F. Event counts per cell for loss and gain of chromosomes, arms, and large segments, split by #WGD 1343 

state and Prevalent vs Rare WGD patient status. Mann-Whitney U test significance is annotated as 1344 

‘ns’: 5.0×10-2 < p ≤ 1.0, ‘*’: 1.0×10-2 < p ≤ 5.0×10-2, ‘**’: 1.0×10-3 < p ≤ 1.0×10-2, ‘***’: 1.0×10-4 < p ≤ 1345 

1.0×10-3, ‘****’: p ≤ 1.0×10-4. 1346 

G. Left: Low-magnification IF image of FFPE tumor section from a representative HGSOC patient, 1347 

stained with DAPI (DNA) and anti-cGAS antibody. Middle: High-magnification inset. Right: cGAS 1348 

segmentation mask of MN in the foreground and DAPI segmentation mask of PN in the background. 1349 

H. Z-scored MN rate split by Prevalent vs Rare WGD patient status. 1350 

I. Patient CN event counts per cell for loss and gain of chromosomes, arms, and large segments (x-1351 

axis) compared with slide specific Z-scored MN rate (y-axis).  Points are colored by Prevalent vs 1352 

Rare WGD patient status. 1353 

J. Diagram defining focal high-level amplification. 1354 

K. Count of clonal focal high-level amplifications per patient split by Prevalent vs Rare WGD. 1355 

L. Count per cell of low-prevalence focal high-level amplifications split by Prevalent vs Rare WGD.  1356 

Low prevalence was defined as occurring in 2 or more cells but less than 10% of the patient cell 1357 

population. 1358 

M. Example low prevalence focal high-level amplification found in patient 002 (bottom) and not 1359 

detectable in the pseudobulk copy number of the same patient.  1360 
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Figure 4. Modes of evolution post WGD 1361 

A. Pre- and post-WGD events illustrated for the ancestral branch of patient 044. 1362 

B. Counts of ancestral arm and chromosome events detected across the cohort, grouped into pre- 1363 

or post-WGD. 1364 

C. Counts of arm and chromosome events occurring post-WGD for all high-confidence clonal and 1365 

subclonal WGD events detected across the cohort, split by clonality of the WGD (cell fraction 1366 

threshold 0.99). 1367 

D. Boxplots summarizing C annotated with p-values (Mann-Whitney U test). 1368 

E. MEDICC2 tree and copy number for patient 014 (left). The outgroup cell is shown with missing 1369 

focal HL Amps (bottom right) compared with the majority of cells represented as a pseudobulk (upper 1370 

right) for which there have been additional losses and focal HL Amps. 1371 

F. CN (top) and allelic imbalance (bottom) for two divergent WGD clones from patient 083 (left, right) 1372 

with shared WGD origin. Late and divergent HL Amps and losses of distinct alleles are highlighted. 1373 
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Figure 5. Cell cycle progression in the context of whole genome doubling 1375 

A. Proportion of cancer cells (y-axis) grouped by cell cycle phase (x-axis) in Prevalent WGD vs Rare 1376 

WGD tumors (color). 1377 

B-C. Cell cycle pseudotime inference in cancer cells. Inner ring shows cell cycle pseudotime in 1378 

cancer cells and outer ring shows smoothed density estimate. B: Cell cycle assignment. C: 1379 

Pseudotime grouped by Prevalent WGD (cyan) and Rare WGD (yellow) tumors.  1380 

D. Scaled expression of phase-specific genes in Prevalent vs Rare WGD tumors as a function of cell 1381 

cycle pseudotime. 1382 

E. Differences in scaled gene expression of phase-specific genes in Prevalent vs Rare WGD tumors 1383 

as a function of cell cycle pseudotime. 1384 

F. Dotplot of correlations between missegregation rates derived from scWGS and cell cycle phase 1385 

from scRNA in site-matched samples. 1386 

G. Scatter plot of G1/S cell count ratios (y-axis) by rates (counts per cell) of large chromosomal 1387 

changes (x-axis) split by Rare and Prevalent WGD (color). Regression coefficients and significance 1388 

results are shown separately for Rare and Prevalent WGD. 1389 
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Figure 6. Tumor cell phenotypes and microenvironment remodeling in the context of whole 1391 

genome doubling 1392 

A. Scatter plot depicting regression coefficients (x-axis) and significance (y-axis) for selected genes 1393 

and pathways in Prevalent versus Rare WGD tumor cells. 1394 

B. Per-sample mean expression of STING1 in Prevalent and Rare WGD samples. 1395 

C. Scatter plot of STING1 gene expression (y-axis) by rate (counts per cell) of chromosomal losses 1396 

(x-axis) split by Rare and Prevalent WGD (color). Regression coefficients and significance results 1397 

are shown separately for Rare and Prevalent WGD patients. 1398 

D. Scatter plot of hallmark E2F module score (y-axis) by rate (counts per cell) of chromosomal losses 1399 

(x-axis) split by Rare and Prevalent WGD (color). Regression coefficients and significance are shown 1400 

separately for Rare and Prevalent WGD patients. 1401 

E. UMAP showing differential cell state enrichment in Prevalent versus Rare WGD samples in 1402 

different TME cell types. 1403 

F. Differential cell-type abundance testing results for cell types in Prevalent versus Rare WGD 1404 

samples. 1405 

G. Normalized enrichment scores (NES) for the interferon pathway across TME cell types. 1406 

H. Normalized enrichment scores (NES) for the cell cycle pathway across TME cell types. 1407 
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Extended Data Figure 1. Study and cohort overview 1409 

A. Schematic of the MSK SPECTRUM specimen collection workflow including primary debulking 1410 

surgery or laparoscopic biopsy, single-cell suspensions for scWGS and scRNA-seq, and biobanking 1411 

of snap-frozen and FFPE tissue samples. 1412 

B. Cohort overview. Top panel: Oncoprint of selected somatic and germline mutations per patient 1413 

and cohort-wide prevalence. Single nucleotide variants (SNVs), indels, and fusions shown are 1414 

detected by targeted panel sequencing (MSK-IMPACT). Focal amplifications and deletions are 1415 

detected by single-cell whole genome sequencing (scWGS). Patient data include WGD class, 1416 

mutational signature subtype, patient age, staging following FIGO Ovarian Cancer Staging 1417 

guidelines, and type of surgical procedure. Bottom panel: Sample and data inventory indicating 1418 

number of co-registered multi-site datasets: single-cell whole genome sequencing, single-cell RNA 1419 

sequencing, H&E whole-slide images, immunofluorescence, bulk WGS and bulk MSK-IMPACT. 1420 
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Extended Data Figure 2. Quality control of scWGS data and WGD inference 1422 

A. Number of high-quality cells generated per patient. 1423 

B. Distributions of per-cell coverage depth per patient. 1424 

C. Fraction of cells called as tumor, non-tumor, doublet, and S-phase for each patient. 1425 

D. Example doublet identified from an image taken during DLP+ sequencing. 1426 

E. Frequency of gains (red, above the horizontal) and losses (blue, below the horizontal) among all 1427 

single-cell genomes in the cohort, with known drivers genes annotated. 1428 

F. Ploidy (mean copy number) for each patient in the SPECTRUM cohort as measured by MSK 1429 

IMPACT (x-axis) and scWGS (y-axis). 1430 

G. Fraction of the genome with loss of heterozygosity (LOH) for each patient in the SPECTRUM 1431 

cohort as measured by MSK IMPACT (x-axis) and scWGS (y-axis). 1432 

H. Shown for all quality-filtered cells in the cohort is the mean difference between major and minor 1433 

copy number (y-axis) versus the fraction of the genome with major copy number ≥ 2 (x-axis), with 1434 

cells colored by #WGD state.  The dashed line at 0.5 denotes the decision boundary for 0 vs 1 1435 

WGDs. 1436 

I. Shown for all quality filtered cells in the cohort is the mean difference between major and minor 1437 

copy number (y-axis) versus the fraction of the genome with major copy number ≥ 3 (x-axis), with 1438 

cells colored by #WGD state. The dashed line at 0.5 denotes the decision boundary for 1 vs 2 WGDs. 1439 

J. Cell diameter measured from DLP+ images. Each point is the mean cell diameter within a given 1440 

patient for 0×, 1× or 2×WGD cells. Points representing cells from the same patient are connected by 1441 

dashed lines. Boxplots show the distribution of means for each WGD state. 1442 

K. Distribution of mitochondrial DNA copy number (log2) inferred from scWGS in 0×, 1×, and 2×WGD 1443 

cells. 1444 

L. Distribution over patients of the fraction of cells within each patient with subclonal WGD, i.e., 1 1445 

more WGD than the dominant population for that patient. 1446 

M. Age at diagnosis for patients in the SPECTRUM cohort split by Prevalent vs Rare WGD. 1447 

N. Age at diagnosis for patients in the PCAWG ovarian cohort split by WGD vs non-WGD. 1448 
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O. Fraction of Prevalent and Rare WGD patients in the SPECTRUM cohort for each mutational 1449 

signature. 1450 

P. Fraction non-WGD and WGD patients in the Ovarian Metacohort for each mutation signature. 1451 
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Extended Data Figure 3: Non-WGD subclones and subclonal WGD 1453 

A-C. 0×WGD subpopulations in patients 045 (A), 075 (B) and 125 (C). Shown for each patient is the 1454 

total (left) and allele specific (middle) copy number for each clone (y-axis). At right are the fraction of 1455 

cells from that clone found in each anatomic site (left) and the number of cells for each clone (right). 1456 

D. SBMClone block density matrix for patient 025 showing the proportion of SNVs detected for each 1457 

clone (y-axis) and SNV block (x-axis). The SBMClone cluster and WGD status of each cell are shown 1458 

on the right. The 2×WGD clone in patient 025 is distinguished by clone-specific SNVs (arrow). 1459 

E. Copy number for chromosomes 7, 8, and 9 for cells in patient 006, separated into non-WGD cells 1460 

(top), WGD cells (middle), and inferred post-WGD changes in WGD cells (bottom). The cell order is 1461 

the same for the middle and bottom plots. Arrows indicate shared post-WGD changes that represent 1462 

a WGD subclone. 1463 

F. Copy number for chromosomes 2 and 8 for cells in patient 031, separated into non-WGD cells 1464 

(top), WGD cells (middle), and inferred post-WGD changes in WGD cells (bottom). The cell order is 1465 

the same for the middle and bottom plots. Arrows indicate shared post-WGD changes that represent 1466 

a WGD subclone. . 1467 

  1468 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.11.602772doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.602772


 

61 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.11.602772doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.602772


 

62 

Extended Data Figure 4: Single cell measurement of chromosomal instability 1469 

A. Schematic of nearest neighbor difference (NND) using fraction of the genome different as a 1470 

distance measure (left). Shown are the nearest neighbors and regions of the genome that are 1471 

different for a 0×WGD cell (middle) and a 1×WGD cell (right). 1472 

B. Empirical distribution of NND for all cells, and beta distribution fit (red). 1473 

C. NND (y-axis) by ploidy (x-axis) for cells from patient 081. Color indicates #WGD and divergent 1474 

status. 1475 

D. Copy-number profiles for example 0×WGD (top), 1×WGD (middle) and divergent (bottom) cells 1476 

from patient 081. 1477 

E. Arm nullisomy rates (counts per cell) for divergent and non-divergent cells in rare and prevalent 1478 

WGD patients.  Shown is the distribution of mean rates per population in each patient. 1479 

F. MEDICC2 phylogeny (left) total copy number (center) and inferred cell specific copy number 1480 

changes (right) for patient 110. 1481 

G. Rates of chromosome, arm, and segment losses and gains (counts per cell) normalized for 1482 

increased or decreased opportunity for an event based on genomic content in each cell’s ancestor.  1483 

MWU significance is annotated as ‘ns’: 5.0×10-2 < p <= 1.0, ‘*’: 1.0×10-2 < p <= 5.0×10-2, ‘**’: 1.0×10-1484 
3 < p <= 1.0×10-2, ‘***’: 1.0×10-4 < p <= 1.0×10-3, ‘****’: p <= 1.0×10-4. 1485 

H Number of focal high level amplifications per patient detected in the PCAWG ovarian cohort, split 1486 

by WGD vs non-WGD. 1487 

I. Number of post-WGD chromosome and arm gains and losses (x-axis) compared to the mutation 1488 

time in C>T CpG counts (y-axis) measured since the WGD event. 1489 
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Extended Data Figure 5: Cell cycle progression in the context of whole genome doubling 1491 

A. UMAP of cancer cells colored by Rare vs Prevalent WGD patient labels. 1492 

B. UMAP of cancer cells colored by inferred cell cycle state. 1493 

C. Coefficients (x-axis) of a Generalized Estimation Equation (GEE) fit to the difference in cancer 1494 

cell cycle fractions between Rare and Prevalent WGD samples, corrected for patient effects.  1495 

Significance of WGD effect on cell cycle fractions are shown at right. 1496 

D. Distribution of G1/S cancer cell cycle ratios for Rare and Prevalent WGD samples. 1497 

E. Absolute and relative compositions of cell cycle fractions in CD45- sorted samples based on 1498 

scRNA-seq. Samples are separated by patient and ordered by proportion of S-phase cells out of all 1499 

cancer cells. 1500 

F. Distribution of cell cycle pseudotime estimates over all cells for each patient, separated into 1501 

Prevalent WGD (top) and Rare WGD (bottom). 1502 

G. Correlation between the fraction of cancer cells in G1, S and G2M phase (y-axis) and rates 1503 

(counts per cell) of chromosome, arm, and segment losses and gains (x-axes). 1504 
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Extended Data Figure 6: Tumor cell phenotypes and microenvironment remodeling in the 1506 

context of whole genome doubling 1507 

A. Correlation between DLP+ and scRNA based copy number.  Data points for box plots are scRNA 1508 

inferCNV copy number clusters.  The y-axis shows correlation between each DLP+ sbmclone cluster 1509 

and each scRNA copy number cluster from the same patient (blue).  As a comparator we show the 1510 

same correlation computed with each DLP+ SBMClone cluster from any other patient (red). 1511 

B. Ratio of cancer cell UMI counts to fibroblast and endothelial cell UMI counts, averaged within 1512 

each patient.  Patients are grouped by Rare vs Prevalent WGD. 1513 

C. Cytotoxic CD8+ T cells (y-axis) and CXCL10+CD274+ Macrophages (x-axis) as fractions of CD45+ 1514 

cells across CD45+ samples. Points are colored by the WGD class of the patient from which the 1515 

sample originated. 1516 

D. Copy number inferred from scATAC for RPE1 cells across treatment conditions. 1517 

E. Clone copy number inferred from DLP for RPE1 cells across treatment conditions.  Two clones 1518 

were identified: one WGD and one non-WGD. 1519 

F. Chromosome and arm loss and gain events per cell for non-WGD RPE1 cells treated with DMSO 1520 

control (RPE-D), nocodazole (RPE-noco) and reversine (RPE-rev). 1521 

G. Fraction of non-WGD RPE1 cells within G1 phase (y-axis) for each treatment condition: DMSO 1522 

control (RPE-D), nocodazole (RPE-noco) and reversine (RPE-rev). 1523 

H. Average STING1 expression (y-axis) for non-WGD RPE1 cells by treatment condition (x-axis): 1524 

DMSO control (RPE-D), nocodazole (RPE-noco) and reversine (RPE-rev). 1525 

I. WGD and non-WGD copy number clones inferred from scRNA-seq of sample RPE-WGD. 1526 

J. Expression UMAP from scRNA-seq of sample RPE-WGD with cells colored by assignment to the 1527 

WGD and non-WGD clones. 1528 

K. Cell cycle fractions for WGD and non-WGD clones in the RPE-WGD sample. 1529 

L. Expression of  STING1 across all cells (left) and in cells with positive expression (right) in the 1530 

RPE-WGD sample. 1531 
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TABLES 1533 

Supplementary Table 1 
Clinical overview of the MSK SPECTRUM patient cohort. Data include 

patient age at diagnosis, staging following FIGO Ovarian Cancer 

Staging guidelines, type of surgical procedure, WGD class, and 

mutational signature subtype. 

Supplementary Table 2 
Sample inventory. Metadata associated with scWGS, scRNA-seq, 

H&E, IF, bulk tumor and normal WGS, and tumor and normal MSK-

IMPACT datasets. 
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