bioRxiv preprint doi: https://doi.org/10.64898/2025.12.18.693686; this version posted December 22, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Wavelet Based Whole Genome Doubling Aware Single
Cell Copy Number Calling

Benjamin K. Wesley!?, Frank Wos?, Soren Germer?, Jade E.B. Carter?,
Silas Maniatis®, Khanh Dinh'#, James S. Roche?, Timothy R. Chu?, Nicolas
Robine?, Rebecca Fitzgerald®, John Lizhe Zhuang®, Simon Tavaré!:?4 and
Karol Nowicki-Osuch *®7

"rving Institute for Cancer Dynamics, Columbia University, Room 601
Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY 10027, USA
2Department of Biological Sciences, Columbia University, Room 600
Sherman Fairchild Center, 1212 Amsterdam Ave, New York, NY 10027,
USA
SNew York Genome Center, 101 Avenue of the Americas, New York, NY
10013, USA
4Department of Statistics, Columbia University, 1255 Amsterdam Ave, New
York, NY 10027, USA
SEarly Cancer Institute, University of Cambridge, Clifford Allbutt Building,
Adrian Way, Cambridge Biomedical Campus, Cambridge CB2 0AH,
England
SGerman Cancer Research Center (DKFZ) Heidelberg, Tumorigenesis and
Molecular Cancer Prevention Group, Im Neuenheimer Feld 280, 69120
Heidelberg, Germany
"DKFZ Hector Cancer Institute at the University Medical Center
Mannheim, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Abstract

Advances in single cell whole genome sequencing enable profiling of the copy num-
ber state of thousands of cells with minimal sequencing bias across the genome. The
Direct Library Preparation + technique is an whole genome amplification-free single
cell whole genome sequencing method that achieves high throughput by fragmenting
each cell’s genome and ligating sequencing adapters using a modified Tn5 transposase,
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Figure 1: For each cell sequenced by DLP+, Songbird simultaneously estimates the copy
number breakpoints, and the cell’s overall ploidy. These two pieces of information are inte-
grated together to fit copy number states which maximize fit, and refines the copy number
calls by sharing estimated ploidy information across all cells. The example cells are triploid,
so the overlapping read ratio for ploidy estimation approximates 2/3.
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and sequencing to less than 0.1x coverage. Despite recent advances in experimental
approaches, data analysis of single cell whole genome sequencing lags behind and the
existing methods are not optimized for the analysis of frozen samples with variable
DNA preservation. Furthermore, existing tools predominantly rely on read depth ra-
tio in predefined genomic bins to call copy number, making whole genome duplication
unidentifiable. To address this, we introduce Songbird, a single cell whole genome
sequencing copy number caller that is whole genome duplication sensitive, and outper-
forms existing tools both in breakpoints identification and true copy number detection.
We demonstrate that Songbird is robust down to extremely low coverage, adaptable
to a variety of genome versions (hgl9, hg38, hs.1), and is extensible to other single
cell whole genome sequencing methods that rely on Tnb tagmentation to fragment the

genome.

Introduction

Copy number variations (CNVs) are genome-wide changes observed across the majority of
solid tumor types and often contribute significantly to the fitness advantage exhibited by
primary tumor subclones [1]. CNVs can arise in many ways — for example, oncogene-driven
failures in cytokinesis can result in whole genome doubling (WGD), enabling cells to lose sig-
nificant genetic material without suffering haploinsufficiency of essential genes [2]. WGD is
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often one of the earliest changes in natural histories of gastric and esophageal adenocarcino-
mas [3]. Alternatively, failures in DNA damage response enzymes, or micronuclei formation
cause rearrangements and genomic lesions which give rise to CNVs [, 5]. Regardless of
the mechanism behind their creation, CNVs may delete tumor suppressor genes, or produce
multiple copies of oncogenic ones, potentially increasing the tumor fitness [0, 7]. The gain in
fitness follows tumor evolution models, and recent work has linked copy number changes to
immune evasion in ovarian cancer [8, 9]. While traditional in-line copy number changes are
an intuitive driver of cancer evolution, the same processes driving copy number changes also
creates structural variants (SVs) which contribute to tumor heterogeneity and plasticity [10].

Two such structural variants, breakage fusion bridges (BFBs) and extrachromosomal
circular DNA (ecDNA), exhibit extremely high copy counts in cells with highly variable
copies from generation to generation [I1, 12]. These SVs, through their high count and
highly variable composition, drive intratumoral heterogeneity and allow tumors to adapt
rapidly to overcome treatments and immune surveillance [10, 13].

In both cases, the adaptability conferred to tumors by these SVs make them an important
topic of research. Since these SVs can have wildly varying copy numbers, even within cells of
the same phylogeny, it is important to study these structural variants on a single cell level.
The tools best suited to studying this, single cell whole genome sequencing (scWGS), can be
distinguished into three categories: PCR-, isothermal amplification-, and transposase-based
[14]. PCR and isothermal amplification-based scWGS both rely on degenerate oligonucleotide
primers (DOP) to randomly prime and amplify the genome [15, 16, 17]. Due to the reliance
on primer binding and uniform amplification of DNA the first two methods suffer from allelic
dropout or uneven coverage of the genome, requiring high sequencing depth to reconstruct
the copy number changes [18, 19].

Direct Library Preparation Plus (DLP+) is a Tnb tranposase-based scWGS method that
uses a robotic dispensing system to spot and lyse cells in nanoliter-scale wells of a 5184-well
chip. The genomic DNA is converted into sequencing libraries in a sequential procedure that
starts with simultaneous genomic fragmentation and library adaptor ligation facilitated by
the Tn5 transposase. Following tagmentation, the Tn5 enzyme is deactivated and per-cell
barcodes added to the genomic fragments via PCR amplification. Unlike DOP- or isothermal
amplification-based methods, the Tn5 activity is randomly distributed across the genome,
enabling accurate copy number recovery with shallow depth [20].

Furthermore, since library adapters are directly ligated to the genomic DNA, unique reads
represent the original genomic fragments. However, due to the random adapter pairings on
fragments, DLP+ has a maximum possible coverage of 0.5 times the cell’s overall ploidy [14].

Currently only a small family of tools dedicated to calling CNA from scWGS data exists.
The most straightforward of these, HMMCopy and SCOPE, rely on the read depth ratio of
the binned read counts to fit copy number states. HMMCopy relies on a hidden Markov model
to identify the transition point between copy number states [21]. Since the transition matrix
in a hidden Markov model is finite, HMMCopy is unable to call copy numbers accurately in
regions with high copy number state. SCOPE on the other hand fits a hierarchical model
to the data, adjusting its copy number fitting for per-cell variations [22]. Since these tools
rely only on binned read counts, they are unable to detect WGD events, as the ratio in read
counts across bins follow similar distributions regardless of whether WGD has occurred.

Other tools attempt to address the WGD non-identifiability problem in a variety of ways.


https://doi.org/10.64898/2025.12.18.693686
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2025.12.18.693686; this version posted December 22, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

CHISEL and Alleloscope use single nucleotide polymorphism (SNP)-based phasing to esti-
mate the cell’s average ploidy [23, 21]. However, since both tools rely on phasing, they need
significant depth to accurately estimate copy number, and they would not detect perfect
WGD where the ratio between alleles at heterozygous SNPs remain one-to-one. scAbsolute
has attempted to address WGD detection in DLP+ data specifically by comparing overall
read depth to local read density. It also relies on a hidden Markov model to identify copy
number breakpoints, but uses an expectation maximization algorithm to fit the final copy
number [25]. Interestingly, even though the unique reads in DLP+ are derived from unique
fragments of the genome, no tool has been able to use that information to estimate true
ploidy, largely due to the low coverage of the DLP+ data itself. Furthermore, the Tnb en-
zyme leaves nine nucleotide overlaps in adjacent reads, providing extra information about
adjacent fragments from the same allele.

Leveraging this unused information, we present Songbird, a Haar wavelet based, absolute
ploidy sensitive copy number caller adaptable to any Tnb-based whole genome sequencing
method (Figure 1). In contrast to other tools, Songbird uses unbalanced Haar wavelets to
sensitively identify the breakpoints in the genome [26]. In addition, the tool leverages the
unique features of Tnb-based scWGS to both estimate the average ploidy of the cell and the
amount of the genome available for sequencing initially. Lastly Songbird uses a likelihood
ratio maximization algorithm to estimate the true copy number given the segmented regions
and estimate of true ploidy. We benchmark Songbird against simulated scWGS data, existing
DLP+ datasets and ploidy ladders, and show that Songbird more accurately captures high
copy number events and estimates ploidy better than competing tools. In addition, Songbird
is extensible to data aligned to hgl9, hg38, and hs.1 versions of human genome.

2 MATERIALS AND METHODS

2.1 Patient Information

Endoscopic and surgical samples were collected at the Cambridge University Hospitals NHS
Trust (Addenbrooke’s Hospital) from esophageal adenocarcinoma patients undergoing cancer
resection. The study was approved by the Institutional Ethics Committees (REC 07/H0305/52
and 10/H0305/1), and all subjects gave individual informed consent.

2.2 Single Cell DNA Sequencing
2.2.1 Tissue Culture

The immortalized hTert cell lines were derived from a male lymphoblastoid cell line. The
hTert and HEK293T cell lines were cultured at 37°C in 5% CO2, and grown in RPMI-1640
or DMEM respectively. Both media are supplemented with 2mM L-glutamate and 10%FBS.
Cells were passaged every 2-3 days after achieving approximately 90% confluency. To passage,
the cells were washed with 1x PBS, detached using 0.05% Tripsin and reseeded at 1:5 split,
and cell passage number was recorded.
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2.2.2 DLP+ Sequencing

DLP+ was performed in keeping with previously published protocols [20]. In order to create
the sequencing ladder, a mixture of cells were placed into each well such that the total
genomic content ranges from 2N to 10N. For each of the cell mixtures (1x,2x,3x,4x hTERT,
1x HEK293T, 1x hTERT and 1x HEK293T, 2x hTERT and 1x HEK293T, 1x hTERT and
2x HEK293T, 2x hTERT and 2x HEK293T), we spotted 100 wells. Prior to cell spotting,
[llumina-compatible primers containing unique cell barcodes are spotted into 72x72 array.
After cells spotting each well is loaded with QIAGEN protease, Viagen DirectPCR cell lysis
buffer, and the cells heat lysed at 50°C for 60 minutes followed by buffer inactivation at
75°C, 15 min. The tagmentation buffer is then added and incubated at 55°C for 10 minutes.
The Tnb reaction was stopped by neutralization via Qiagen Protease at 50°C for 10 minutes
followed by an additional heat inactivation of the protease (70°C, 15 min). After deactivation
of the Tnb enzyme, the samples underwent 11 cycles of PCR and the resulting amplified DNA
were pooled from the individual wells and sequenced on an Illumina NovaSeq 6000 S4 flow
cell to produce 150bp paired end reads.

2.3 Data Preprocessing

The ploidy ladder and the esophageal adenocarcinoma sample were processed using the mon-
drian pipeline (https://github.com/mondrian-scwgs/mondrian); reads were trimmed using
TrimGalore v0.6.6, and quality checked with FASTQC v0.11.9. Trimmed reads were then
assigned to a read group based on the trimmed adapter sequence and aligned to the GRCh38
genome with decoy and alternative contigs and screened for contamination using FastQScreen
v0.14.0. The per cell bam files were filtered to retain high quality (phred score greater than
30), primary alignments mapped to the 22 autosomes and two sex chromosomes. The filtered
bam is deduplicated using samtools (v1.16) firmate and markdup functions before using bed-
tools (v2.30.0) bamtobed to generate the bedpe file that identifies genomic regions spanned
by each fragment.

To prepare the SNV data for Alleloscope, we followed the tutorial provided on their github
repository. This involved producing phased SNV calls from the bulk bam, converting the calls
to a cell-by-position matrix using Vartriz (https://github.com/10XGenomics/vartrix), and
generating a counts matrix in the same format. Alleloscope, SCOPFE, and scAbsolute were run
in keeping with their respective documentation. HMMCopy was run in a small optimization
loop based off the mondrian pipeline. This involves multiplying the GC and mappability
corrected read density against a series of multipliers which will convert the read density into
integer states. The multiplier value which minimizes the number of half copy calls (i.e., copy
numbers 1.5, 2.5, 3.5 etc.) is retained as the true multiplier.

2.4 Simulated Read Generation

We use CINner [27], an algorithm for modeling the evolution of chromosomal instability, to
create simulated copy number profiles. Each simulation starts with 1,000 diploid cells, and the
cell division probabilities are calibrated such that the total population size remains constant
on average. Each cell division contains a missegregation of a randomly selected chromosome


https://doi.org/10.64898/2025.12.18.693686
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2025.12.18.693686; this version posted December 22, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

with probability pmissee € {0.02,0.05,0.08,0.2}. The copy number profiles observed after an
average of 300 generations are then recorded.

We then simulate cell- and bin-specific readcounts. For a given cell, let {n;, g;} be the
simulated copy number and GC content of bin j. We assume a total of r = 4 x 10° reads per
cell, following Gamma distribution per bin with scale o = 0.02 (approximated from previous
DLP+ data). We simulate read count r; for bin j as:

/— . .
nj—n] g;

n; ~ Gamma (shape = L scale = 0)
o

n’!
{r;}j=12.. ~ Multinomial | size = r, probabilities = L
> |l

The inferred copy numbers based on {r;} are then compared against ground-truth copy
numbers {n;} to determine accuracy.

2.5 Songbird

Songbird is composed of four parts — breakpoint identification, ploidy estimation, sub-
clone/whole genome duplication detection, and finally integer fitting.

2.5.1 Copy number breakpoint identification

We use ()DNASeq to load in reads from the bam file, bin them, and perform read depth
correction per cell [28]. We adjust the read depth with respect to mappability and GC
content using correction factors calculated using only autosome aligned reads, but applied
to the whole genome. In order to identify breakpoints where the true copy number state
changes in the corrected read density, we use the unbalanced Haar wavelet transform [26].
This algorithm fits asymmetrical Haar wavelets to time series data. It does so by splitting
the data at the most probable point where the average value after the breakpoint is distinct
from the average value before the breakpoint and assigns a score to the split. The algorithm
then recurses on the time span before and after the breakpoint separately, repeating until
the data can not be split anymore, or all values are identical. Splits with support greater
than a threshold are retained. In this case, we treat the entire genome as the time series
data, ordered by chromosome and coordinate, and the threshold is set to the median absolute
deviation of the read depth, as recommended by the paper.

2.5.2 Ploidy and Available Genome Estimation

The genomic coordinates covered by each fragment are loaded in from the bedpe file and
further filtered to remove artifactual and short fragments. Artifactual fragments are defined
as fragments which share a start or end coordinate with another longer fragment and oriented
in the same direction (e.g. for both fragments, the forward sequencing read aligned to the
Watson DNA strand and reverse read to the Crick DNA strand). We apply a user-defined
minimum fragment length cutoff; typically 50 nucleotides for [llumina short read sequencing.
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We also remove the first 10 nucleotides from each fragment span to correct for the overlap
generated by Tnb tagmentation between adjacent fragments.

In order to estimate the ploidy n of given cells we work with pre-filtered sequencing
fragments. As mentioned above, we know that, the DLP+ chemistry ensures that the spans
covered by each unique fragment represent a unique allele. If we choose a sequenced fragment
and designate it as the reference fragment, we know that there are n — 1 copies of the
genome available to generate fragments at the genomic coordinates overlapping this reference
fragment, and n copies of the genome wherever the reference fragment is not. Given a
known minimum fragment length, we know that fragments starting less than that length
upstream of the reference fragment must overlap the reference fragment, therefore are from
unique alleles. We designate such fragments as overlapping fragments. In contrast, fragments
starting significantly upstream (greater than the maximum length of all fragments) of our
reference fragment are drawn from all n copies of the genome, as they should never overlap
the reference fragment. We designate these as upstream fragments. In practice, we look for
the upstream fragments in a variable window that starts at the maximum read length before
the start of the given reference fragment and ends at the minimum read length before the
start of the reference fragment. Since the longest fragments rarely exceed 1.5 kilobases in
[lumina short read sequencing, the upstream and overlapping fragments are likely drawn
from regions of the genome with similar accessibility.

With these assumptions for each reference fragment with the start coordinate a, we cal-
culate the count of overlapping fragments in the window (@ — min(fragment.length), a) and
the count of the upstream fragments in the window (b, a — max(fragment.length)), where b
is a genomic location significantly upstream of a. To account for the different length of the
overlapping and upstream windows, we normalize the counts by their respective window size.
The overlapping fragment start density and upstream density is converted to the estimated
ploidy using the equation:

Est. ploidy n =~ 1/(1 — overlap density/upstream density).

For extremely long fragments, such as those generated by PacBio sequencing, the kilobase
fragment lengths mean that long fragments could stretch into regions of the genome which
were not similarly preserved or deacetylated as the reference region. Therefore, we have to
enforce an upper limit on the fragment lengths, which in our limited experience is approxi-
mately eight kilobases.

2.5.3 Subclone Identification, Ploidy Correction, and Whole Genome Duplica-
tion detection

To help correct the noisy ploidy estimates we use information from all cells and identify sub-
clones with similar copy number states and pool the ploidy estimates to get a more accurate
value. Subclones are identified by clustering the positions of the copy number breakpoints
between cells. In more detail, we find breakpoints that are observed in at least 10% of cells,
apply a Gaussian smoothing kernel to minimize the difference between breakpoints that are
offset by one bin, and construct a graph between the k£ nearest (Manhattan distance) neigh-
bors to each cell. This graph is entered into the Phenograph algorithm to identify subclones
[29]. Within each subclone, we gather estimated average ploidies (greater than 0 and less
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than 10) from cells with more than 50,000 reads and fit a k = 2 K-means clustering model on
the values. If the clusters are sufficiently compact and the centroids are close to a 1:2 ratio,
cells are assigned WGD status based on their cluster membership.

2.5.4 Integer fitting

We use the average ploidy estimate to propose a targeted range of possible average integer
ploidies for the cell. For each of the tested average ploidies we calculate a reads per copy
number (RpCN) value using the median segmented value. Since the median segmented value
only provides an approximation of the true RpCN, we need to optimize each proposed RpCN
prior to evaluating the one with best fit (Figure 4B).

To score the RpCNs, we calculate their likelihood using a model where read density per
bin is generated from a normal distribution centered about the true RpCN times the true
copy number state with some noise. We can make a conservative estimate of the magnitude
of the noise by looking at the read density error with respect to the segmented read states.
Finding the RpCN by just maximizing the likelihood of this model alone would always favor
a lower RpCN, as a smaller RpCN will maximize the distribution densities by proposing
more overlapping distributions. To account for this we also generate a null read distribution
for each cell drawn from a normal distribution centered at the overall read density average
using the same noise calculated above. This likelihood ratio between the RpCN applied to
the segmented data and the null data is then used to both optimize each proposed RpCN,
and the RpCN with the largest likelihood ratio is selected.

3 RESULTS

3.1 Tnb-based scDINA libraries contain artifactual reads that bias
the frequency of read overlaps

Since DLP—+ generates fragments derived from unique copies of the genome, simply observing
the patterns of overlapping fragments would be an intuitive way to call the copy number
profile. Ostensibly the maximum fragment depth at any location would indicate the true
copy number state of that region of the genome. We observed two difficulties with this
approach. First, the shallow nature of DLP+ sequencing meant the maximum fragment depth
significantly underestimated the true copy number of high copy number regions. Second, even
after excluding problematic genomic regions such as those found on the ENCODE exclusion
list [30] and only retaining regions with high mappability scores, we observed a significant
number of regions in the genome where the overlap state incremented in steps of two or
higher indicating multiple reads starting or ending at the same coordinates. When compared
to a random simulation read generation, we observe a significantly higher proportion of
two state transitions than expected (Figure 2A). Since we removed classically defined (the
same start and end coordinates) duplicate fragments prior to our bedpe file generation, this
indicated that there were a large number of fragments which started or ended at the same
position but were of different lengths. Furthermore, our data was generated with a diploid,
hTERT overexpressing cell line with no copy number variation outside of chromosome 20
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Figure 2: (A) Heatmap of the fold excess in observed transitions in 100 hTERT Cells vs a sim-
ulation. A high fold excess proportion of 0>2 transitions indicates that there are more reads
starting at the same coordinate than expected by random read placement (B) Scatterplot
comparing the number of artifactual duplicate fragments (same start or end and same orien-
tation) with the number of chance fragments (same start or end, but different orientations)
in 100 diploid hTERT cells. (C) Fragment length distributions for the shorter (blue) and
longer (yellow) member of the artifactual fragment pairs compared to the unique fragment
length distribution (red). (D) Ratio of longer (original) to shorter (duplicated) fragment
counts in the original bam prior to standard duplicate (same start, end and orientation) read

removal. (E) Density across the genome for artifactual and unique fragments calculated over
100 diploid hTERT cells.

(Supplementary Figure 1). Therefore the maximum expected depth should not exceed 2,
which is clearly violated by these fragment pairs. Interestingly, a large majority of these
pairs had identical genomic orientations, outnumbering pairs with opposite orientations in a
nearly 10:1 ratio (Figure 2B).

Looking at the fragment pairs themselves, we observe that the shorter fragment in these
potentially artifactual pairs were shorter than the unique fragment length distribution, while
the longer fragment were longer (Figure 2C). Further investigation of these pairs prior to
duplicate fragment removal showed that these fragments pairs are overwhelmingly amplified
in a 1:1 or 1:2 ratio, hinting that the process which produces these fragments occurs within or
prior to the first cycle of PCR amplification (Figure 2D). While there are some regions where
these fragments are more common than others, the density of these potentially artifactual
sequenced fragments largely mirrors the distribution of all fragments generated in these cells
(Figure 2E). Furthermore, any deviations between all fragment and artifactual fragment
density seems to be a function of genome version as they shift in location depending on the
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Figure 3: (A) Heatmap of simulated read depth in reads generated by CINner with increasing
missegregation rate parameters (B) Jaccard Index scoring the recovery of the simulated
breakpoints in the simulated data. (C) Wasserstein Distance between the segmented state
and true copy number in the simulated data. The segmented states were scaled by each
cell’s true reads per copy number ratio prior to distance calculation. (D) Correlation with
initial segmented states across the sequenced ladder across downsampled cells. Cells with
lower coverage than the target coverage were omitted. (E) Qualitative comparison of the
segmented state across downsamplings for 1 HEK293T Cell.

genome that the data is aligned to (Supplementary Figure 2). Since they are a minority of the
total fragment count (<1%) but constitute a significant proportion of overlapping fragments,
we discard the shorter fragment from each artifactual pair. Discarding these reads improves
ploidy estimation performance.

3.2 Songbird accurately recalls copy number breakpoints in sim-
ulated and real scDNA data

In order to validate the breakpoint sensitivity of the unbalanced Haar wavelet algorithm
we simulated reads from 4000 cells using CINner [27] with increasing rates of chromosomal
instability (Figure 3A). To test the tool, we fit Songbird and HMMCopy to each cell and
compared the break points and overall fitting to the ground truth copy number state. Break-
point recovery was calculated by calculating the Jaccard index between the coordinates of
the estimated and true breakpoints. Since even a one-bin offset will lower the Jaccard index,
this yields relatively low scores, but Songbird still recovered a much higher proportion of true
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breakpoints compared to HMMCopy (Figure 3B). Both Songbird and HMMCopy provide a
segmented read depth value prior to final copy number fitting. Scaling these read depth values
to the true copy using each simulated cell’s actual read per copy number ratio demonstrates
that Songbird’s segmented states mirror the true copy number more closely than HMMCopy
(Figure 3C). In order to test Songbird’s breakpoint estimation in real data, we generated a
ploidy ladder by spotting a DLP+ nanowell array with combinations of hTERT and HEK
cells such that the expected ploidy per well ranges from 2 to 6. As we downsample this
ploidy ladder, the unbalanced Haar segmentation is consistent, maintaining high correlation
with the initial segmentation down to 0.005x coverage, or approximately 100k reads per cell
if using an Illumina short read sequencer (Figures 3D, E).

3.3 Songbird accurately estimates total cell ploidy

In order to estimate cell ploidy, we take advantage of the fact that unique fragments generated
in a DLP+ run are all derived from exclusive fragments of the original genome. Given this
information, if we observe a reference read in a region with n copies of the genome, we know
that there are only n—1 copies left to draw overlapping reads from. In practice this calculation
is not straightforward, since a long reference fragment can be overlapped by multiple shorter
fragments derived from the other alleles. To resolve this problem we enforce a minimum
fragment size cutoff fioi. This enables us to look at a window of fg,0,¢ nucleotides upstream
of our reference fragment and know that the observed fragments starting in that window must
come from different alleles and must overlap our reference fragment. If we look more than
the longest read length, fione, upstream of our reference fragment, we know that the reads
starting in that window do not overlap the reference fragment and are derived from n copies
of the genome. The density of fragments overlapping our reference fragment divided by the
density of fragments far upstream of our reference fragment should approach (n — 1)/n with
sufficient coverage. Following simple algebra, the ploidy n of a cell can then be estimated as
n ~ 1/(1 — overlap density/upstream density).

Songbird provides a practical algorithm (see Methods) for the estimation of a cell’s av-
erage ploidy by treating each read as the reference fragment, repeating this calculation, and
averaging the ratios together. The initial removal of artifactual reads is important for the
accuracy of this method, which we validated by spotting multiples of diploid hTERT and
triploid HEK293T cells into individual wells of DLP+ chips. We were able to estimate true
copy number of the spotted ladder, which ranged in copy number from 2 to 10, reliably up to
copy number 6 (Figure 4A). The accuracy of caller was independent of the version of human
genome assembly (Supplementary Figure 3A). Crucially, since the reference hTERT cell line
is free of copy number alterations, our estimator works in the absence of breakpoints and can
clearly distinguish diploid and tetraploid-like (two cells) without relying on variations in copy
number to distinguish ploidy. Furthermore, Songbird’s ploidy estimator produces consistent
ploidy estimates using smaller bins sizes (down to 50 kbp, Supplementary Figure 3B) and
in high CNA (average ploidy 5) cells down to 0.01x coverage, highlighting its robustness
(Supplementary Figure 3C).

Despite its simplicity and accuracy in high quality data, the stochastic nature of scDNA
sequencing introduces uncertainty in ploidy estimation, as evidenced by the large area covered
by the boxplots in Figure 4A. In order to gain additional knowledge and improve accuracy
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of ploidy calling, we identify clusters of cells with similar breakpoint patterns. To do so,
we apply phenograph clustering on the common breakpoints and average the clustered cell
ploidies to estimate corrected ploidy in each cell and flag WGD cells.

In order to call copy number, we aim to find the correct reads per copy number ratio
(RpCN) for each cell. However, since our ploidy estimate is noisy, we test a set of RpCN
values that correspond to true copy number states around the ploidy estimate. These are
derived by dividing the median segmented read depth by each proposed average ploidy.
Since the median read depth may not be a perfect multiple of the true RpCN for that
cell, we optimize these RpCNs for each proposed ploidy for the maximum likelihood ratio
compared to a null distribution generated from each cell (Figure 4B). To validate Songbird’s
copy number fitting, we used DLP+ sequencing data from a previously published esophageal
adenocarcinoma organoid as it had both a significantly varied copy number profile, and
karotyping to validate the true copy number states (Figure 4C) [31]. Compared to SCOPE,
scAbsolute, and HMMCopy, the reads assigned to each copy number by Songbird were more
normally distributed, indicating better fit (Figure 4D). This is quantified in Figure 4E by
subtracting Shapiro-Wilks test statistic from 1 so that 0 is perfectly normally distributed.
Copy numbers that were not called by the various methods were given a zero score. Lastly,
our ploidy estimator is extendable to other Tn5 based scWGS methods such as Lianti [32],
and SmoothSeq [33] (Supplementary Figure 4A). Furthermore, it can accurately assign copy
number states to cell cycle sorted cells (Supplementary Figure 4B) [20] and the analyzed
previously published DLP+ data demonstrate its universality (Supplementary Figure 4C
and 4D) [25].

3.4 Recapitulating single cell ecDNA Dynamics with Songbird

While most scWGS copy number callers segment the genome with 500kbp bins, Songbird is
able to segment the genome down to 30kbp bins with relatively high fidelity with respect to
the 500kbp segmentation (Supplementary Figure 3B). While the arbitrary bin starting and
end points do not recapitulate the actual genomic breakpoints of structural variants, they
can approximate them (Figures 5B, C). Previously, we collected Oxford Nanopore long read
sequencing from the same esophageal adenocarcinoma organoid and we used it to reconstruct
the structure of an ecDNA and a BFB in that sample [31]. Songbird run at 50 kbp bin
size effectively approximated the ecDNA breakpoints, and the bins identified displayed the
expected ecDNA dynamics across cells (Figure 5D). Namely, while the copy number of the
ecDNA in each cell varies significantly, the copy number ratio between fragments within
the ecDNA are constant across cells, regardless of the total ecDNA copy number state. In
contrast, the BFB does not show consistent ratios across overlapping bins, consistent with
the underlying processes driving inheritance of these structural variants (Figure 5E)

4 DISCUSSION

Here we present Songbird, a wavelet-based, WGD-aware copy number caller for scWGS meth-
ods which rely on tagmentation for the initial cleavage and library adapter deposition. We
demonstrate that Songbird, using the unbalanced Haar wavelet transform, is able to identify
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accurately copy number breakpoints in simulated DLP+ data, and reliably recover those
breakpoints in cells with as little as 0.005x coverage. Furthermore, Songbird’s novel ploidy
calling algorithm is able to recover the true ploidy of cells up to an average ploidy of 6, and
consistently estimate the correct ploidy in cells with anywhere from 0.0025x to 0.01x coverage
depending on the cell’s average ploidy (Supplementary Figure 4C). In addition, we demon-
strate the ploidy calling algorithm’s versatility to a wide variety of protocols, successfully
recapitulating the true ploidy from several other Tnb based scWGS sequencing methods.
Lastly we demonstrate the accuracy of Songbird’s final copy number fitting algorithm, and
demonstrate its ability to recapitulate the expected single cell copy number dynamics of an
already known ecDNA.

In developing Songbird, we have identified and partially characterized artifactual fragment
pairs that seem to have interesting properties: these fragment pairs occur far more often than
expected by chance, violate the known maximum ploidy in cells, and are largely duplicated
in a 1:1 or 1:2 ratio. The first two observations hint at their artifactual nature, and the last
seems to indicate that these fragments are generated prior to PCR amplification or within
the first cycle. The only steps prior to PCR amplification in the DLP+ protocol are adapter
tagmentation, and Tnb neutralization. As a result, we suspect that these reads are generated
from an incomplete Tnb library adapter ligation, where one pair of the Tn5 dimer successfully
cleaves one strand of an already fragmented piece of genomic DNA, while the other one fails
to do so. This successful, failed cleavage pairing would produce two single stranded DNA
fragments, one longer one representing the original, complete Tnb transposase action, and a
shorter one from this partially complete Tnb cleavage. Since the adapter loading on the Tnb
dimer is random, we expect that we only observe half of these events, with the other half
depositing same orientation primers and failing to amplify the short fragment.

We have not performed a biochemical exploration of these events due to their relatively
rare occurrence despite their outsize impact on ploidy estimation. These events could be
caused by anything from Tnb cleavage events interrupted by the neutralization buffer, to
incomplete neutralization, to even defective Tnb monomers which are able to successfully
dimerize with a functional monomer.

While Songbird seems to perform well, further work can be done to improve the noisy
ploidy estimator. Currently, Songbird uses the average overlapping and upstream read den-
sities to estimate true ploidy, but a more sophisticated Poisson or binomial sampling model
may be able to more accurately capture the true copy number state. Furthermore, Song-
bird currently treats cells as independent events with very little shared information from cell
to cell beyond clustering and ploidy estimate correction. A more holistic model that uses
information across multiple cells would be useful. This would, for example, dramatically
improve the accuracy of copy number calls at focal amplifications. Currently, at coarse bin
sizes, the copy numbers from focal amplification events are estimated with only a single bin
of information, which adds noise into the true copy number estimation since those reads are
subject to the same sampling error which makes segmentation a necessity.

13


https://doi.org/10.64898/2025.12.18.693686
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2025.12.18.693686; this version posted December 22, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

5 CONCLUSION

Single Cell Whole Genome Sequencing is essential for understanding tumor heterogeneity.
The highly varied copy number landscape of cancer cells dramatically improves the fitness
of these tumors, allowing them to escape local immune surveillance, evade cell intrinsic anti-
tumor processes, and even gain resistance to therapeutics. The copy number landscape of
these tumors is still to be studied, but in many cases seems to be enabled by whole genome
doubling, making detection of these events critical. Furthermore, key structural variants
such as breakage fusion bridges and ecDNA have been shown more recently to be critical
mechanisms allowing tumors to resist treatment. While critical, these structural variants
tend to be composed of small fragments, far smaller than the standard 500kbp bin size
typically used in existing scWGS copy number calling tools.

Songbird is uniquely positioned to help explore the copy number dynamics of tumors at a
single cell resolution in a manner which can detect these critical biological processes. Songbird
has mostly been tested on DLP+ scWGS data, but has shown promising performance on other
Tnb5 based scWGS methods and even with PacBio long read sequencing. This indicates that
Songbird may be adaptable to future Tn5 based scWGS methods.

6 DATA AVAILABILITY

Songbird is available as an R Package at https://github.com/GastroEsoLab/Songbird. Se-
quencing files for the "TERT /HEK ladder are available upon request. Files for the scAbsolute
Ladder were retrieved from the European Nucleotide Archive project PRJEB61928. Sequenc-
ing files for Lianti and SmoothSeq were retrieved from NCBI bioproject PRJNA379710 and
PRJNA633502 respectively.

Sequencing files for the esophageal adenocarcinoma organoid are available under restricted
access.
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Figure 4: (A) Raw ploidy estimates across our cell ploidy ladder. (B) Log Likelihood Ratio fit
for a range of reads per copy number (RpCN) ratios in a HEK293T cell. Grey lines indicate
the initial RpCN ratio proposed using the median segmented state and red lines indicate the
optimized ratio. (C) Karyotyping of 10 CAM277 organoid cells. Figure used with permission
from Li et al 2018 [31]. (D) Qualitative comparison of the distribution of reads assigned to
each copy number across 581 cells sequenced from the CAM277 organoid. (E) Quantative test
of normality for the reads assigned to each copy number. The test statistic was subtracted
from 1 so that more normal distributions have a lower score.
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(A) Full Copy Number profile of the CAM277 organoid broken into subclones.

(B) Copy number called on 50kbp bins in a region with a known ecDNA in the organoid.
(C) Maximum read depth across the known ecDNA fragment intervals. Intervals for ecDNA
reconstruction were generated using Oxford Nanopore long read sequencing [31]. (D) Copy
number profile and bin ratios for the 50kbp bins overlapping the ecDNA interval. (E) Copy
number profile and bin ratios for 50kbp bins overlapping a separate, known BFB interval.
The BFB interval was reconstructed similarly to the ecDNA intervals [31].
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Supplementary Figure 1: Assigned Copy Number profile for the ploidy ladder.
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Supplementary Figure 2: Density of artifactual reads (red) vs all reads (black dashed) for
100 diploid cells aligned to (A) hgl9, (B) hg38, (C) hs.1.
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Supplementary Figure 3: (A) Estimate Average Ploidy Across the Ploidy Ladder Comparing
reads aligned to hgl9, hg38, and hs.1. Dashed red line indicates expected ploidy based
on the number of cells spotted in each well. (B) Pearson Correlation of the copy number
profile compared to 500kbp bin sizes. (C) Estimated Average Ploidy across the ladder across
different target depth. Higher target depths exclude cells which do not originally have the
required depth.
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Supplementary Figure 4: (A) Estimated Ploidy for cells sequenced using Smooth Seq and
Lianti. (B) Estimated average ploidy for GM18507 cells spotted published in the original
DLP+ paper [20]. (C, D) Estimated average ploidy and final copy number states across the
PEOL1 cell spotting ladder published in the scAbsolute paper [25].
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