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Inference of chromosome 
selection parameters 
and missegregation rate in cancer 
from DNA‑sequencing data
Zijin Xiang , Zhihan Liu  & Khanh N. Dinh *

Aneuploidy is frequently observed in cancers and has been linked to poor patient outcome. Analysis 
of aneuploidy in DNA‑sequencing (DNA‑seq) data necessitates untangling the effects of the Copy 
Number Aberration (CNA) occurrence rates and the selection coefficients that act upon the resulting 
karyotypes. We introduce a parameter inference algorithm that takes advantage of both bulk and 
single‑cell DNA‑seq cohorts. The method is based on Approximate Bayesian Computation (ABC) and 
utilizes CINner, our recently introduced simulation algorithm of chromosomal instability in cancer. We 
examine three groups of statistics to summarize the data in the ABC routine: (A) Copy Number‑based 
measures, (B) phylogeny tip statistics, and (C) phylogeny balance indices. Using these statistics, our 
method can recover both the CNA probabilities and selection parameters from ground truth data, 
and performs well even for data cohorts of relatively small sizes. We find that only statistics in groups 
A and C are well‑suited for identifying CNA probabilities, and only group A carries the signals for 
estimating selection parameters. Moreover, the low number of CNA events at large scale compared to 
cell counts in single‑cell samples means that statistics in group B cannot be estimated accurately using 
phylogeny reconstruction algorithms at the chromosome level. As data from both bulk and single‑cell 
DNA‑sequencing techniques becomes increasingly available, our inference framework promises to 
facilitate the analysis of distinct cancer types, differentiation between selection and neutral drift, and 
prediction of cancer clonal dynamics.

Current advancements in genomics technologies have enabled researchers to examine the extent and patterns of 
tumor chromosomal instability. Over the past two decades, there has been great technological and computational 
progress in bulk DNA-sequencing (bulk DNA-seq) methods, resulting in more uniform coverage and deeper 
sequencing depth at a lower cost. This paved the way for large pan-cancer genomic studies, such as The Cancer 
Genome Atlas (TCGA)21 and Pan-Cancer Analysis of Whole Genomes (PCAWG)20. The enhanced statistical 
power resulting from the large sample sizes has enabled identification of cancer drivers, classification of tumor 
subtypes, and subsequently better diagnosis and treatment decisions based on genetic  biomarkers47,50,56. More 
recently, single-cell DNA-sequencing (scDNA-seq) technologies have emerged as a powerful method to uncover 
the genomic heterogeneity in individual  tumors28,30,35,40. The DNA profiles of individual cells and their inferred 
phylogenies also enable the analysis of how the cancers evolved over time, and which genetic features are associ-
ated with tumor expansions, metastasis and  relapse18,40.

The application of both bulk and scDNA-seq in cancer research has led to an increased understanding of the 
selective role of Copy Number Aberrations (CNAs)4,7,53. Defined as deletions or amplifications of large genomic 
regions, CNAs have been observed to enrich oncogenes and inactivate tumor suppressor genes, contributing 
to uncontrolled proliferation and apoptosis evasion in  cancer3. Successful CNA detection has resulted in better 
patient outcome  prediction5 and personalized  treatment13,16.

We have recently introduced CINner, an efficient algorithm for simulating chromosomal instability during 
 tumorigenesis9. It allows for flexible characterization of copy numbers in individual cells, and considers both 
the generation and selection of diverse karyotypes. When limited to whole chromosomes, CINner extends the 
approach by Lynch et al.32 to simultaneously consider missegregation rate and tissue-specific selection parameters.

In this paper, we examine the problem of inferring the missegregation rate and selection coefficients from 
DNA-seq data with the CINner model. We construct the parameter inference method based on the Approximate 
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Bayesian Computation (ABC)  framework19, utilizing statistics that characterize the observed copy number pro-
files and cell phylogeny from a combination of bulk and scDNA-seq data. We first investigate which statistics 
are most informative in capturing the signals of CNA heterogeneity and selection, and analyze the accuracy of 
the inferred parameters when applied to simulated DNA-seq data. We then investigate the dependence of infer-
ence accuracy on the data sample sizes. Finally, we assess the important open question of the fidelity of inferred 
statistics, and how it might impact the accuracy of our method. Specifically, the analysis of scDNA-seq data 
includes the inference of cell-specific copy numbers from readcount data, and deduction of a phylogeny tree that 
is most compatible of the inferred genomes. As the sequencing technology and computational analysis might be 
prone to noise, the resulting statistics might not be accurate and can impact further parameter estimation. We 
test the reliability of the statistics by comparing between CINner simulations and inferences from  MEDICC223, 
a phylogeny algorithm that has shown great applicability for scDNA-seq analysis.

Results
Inference of copy number aberration rates and selection parameters in the CINner framework
In order to fully characterize the genomic evolution from DNA-seq data, it is important to quantify the rates at 
which CNAs arise and the selection forces that act upon them. Valind et al. constructed a discrete in silico model 
to analyze the increased prevalence of aneuploidy in  cancer51. Their model assumes strong negative selection 
on aneuploid cells in normal tissues that is relaxed in tumors. While CNAs are indeed more tolerated in cancer, 
sequencing data has shown elevated frequencies of certain aneuploidies, either across tumors or specifically to 
some cancer  subtypes38, indicating that they are under positive selection. Elizalse et al. adapted a Markov-chain 
model to estimate the karyotypic  distributions12, building upon a stochastic chromosome copy number evolu-
tion  model29. This approach derived optimal chromosome missegregation probabilities for maximal karyotypic 
heterogeneity while optimizing the computational efficiency. Salehi et al. employed a Bayesian fitness model 
grounded in the Wright-Fisher diffusion to infer clonal fitness coefficients from their growth trajectories in 
time-series scDNA-seq  data40. Since the model does not consider new CNAs, it is applicable for the analysis of 
short-term dynamics and might be inefficient for studying the entire tumor history. Lynch et al. developed a 
model to infer both selection and CNA rates from scDNA-seq32. The framework models fitness as a scaling fac-
tor multiplied by the OG-TSG score from Davoli et al.7, which quantifies the count and potency of oncogenes 
and tumor suppressor genes, then infers the scaling factor and missegregation rate. As the OG-TSG score is 
computed for all genes across pan-cancer TCGA samples, it might be challenging to adapt this framework to 
study individual cancer types, where identification of driver genes and their mutation frequencies is difficult 
due to low sample counts.

We recently introduced  CINner9, an efficient algorithm to simulate the evolution of chromosomal instability 
(CIN) during tumorigenesis. CINner uses a birth-death process to model tumor  cells25, where a cell’s fitness and 
probability of division depend on its karyotype (Figure 1a). In this paper, we focus on the problem of inferring the 
parameters governing whole-chromosome missegregations, which have been frequently observed across different 
cancer  types28,38. The parameters of interest include pmisseg , the probability that a missegregation event occurs 
in a cell division, and selection parameters {si} , where si quantifies the change in cellular fitness as chromosome 
i is amplified or deleted (Figure 1b). The parameters pmisseg and {si} are assumed to be constant among cells and 
samples. Each CINner simulation starts from a diploid population at time 0 and a sample is taken at 80 years, 
when a hypothetical patient is diagnosed (see Methods).

In traditional Bayesian inference, the posterior distributions for pmisseg and {si} are proportional to the data’s 
likelihood and prior  probabilities27. However, numerical computation of the likelihood requires many simulations 
for each parameter set, rendering this approach too computationally expensive for our problem. Therefore, we 
implement Approximate Bayesian Computation (ABC), a Bayesian inference approach that replaces the likeli-
hood by a distance function between statistics from the data and those simulated from a model. Simulation has 
been used to approximate the  likelihood8, and it was applied to estimate the posterior distributions of coalescence 
times and mutation rates from DNA-seq data in population  genetics48.

Over the last decades, ABC has been used in different fields of study to estimate parameters for complex 
models, especially in  biology2. Many algorithms have been developed to improve ABC’s performance for differ-
ent task  requirements44. For our problem, we consider a wide range of statistics for DNA-seq observations, to 
be discussed in the next section. We utilize ABC-random forest (ABC-rf), as the algorithm is less sensitive to 
noise impacted by poor choices of summary  statistics39 (Figure 1c). For each parameter, ABC-rf builds a random 
forest from a training set consisting of sampled values from the prior distribution and corresponding simulated 
statistics. It then predicts the posterior distribution with regression from the random forest conditional on 
observed statistics from data, without requiring a metric on the statistic space.

Statistics for copy number profiles and cell phylogeny from DNA‑sequencing data
The accuracy and robustness of ABC’s application in parameter inference depend heavily on the choice of sum-
mary  statistics39. This is especially true for methods depending on a metric to compare statistics from data and 
 model44. The large sample sizes of recent bulk DNA-seq studies enable accurate depiction of the selection land-
scape. However, the method offers only limited information about cancer clonality, which carries the signals for 
CNA rates. On the other hand, scDNA-seq captures the heterogeneity in individual tumors, but current technical 
and financial limits result in modest datasets that are prone to over-fitting. By combining the two data sources, 
we can accurately recover both missegregation rate and selection parameters. In this section, we describe several 
statistics for Copy Number profiles and cell phylogeny that can be measured from bulk and scDNA-seq data. We 
then analyze their performance in indicating the signals of CNA rates and selection parameters. The statistics 
are categorized into three groups, depending on the target aspect of the data.
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Several statistics estimate the heterogeneity and CNA burden from CN profiles, which we categorize as “CN 
statistics”. Shannon diversity  index43 measures species diversity in a given cohort based on species count and 
abundance, and has been widely used in genetic population studies. Given a scDNA-seq data set, individual cells 
can be clustered into subclones based on their CN profiles. The Shannon diversity index can then be computed 
from the subclone count and the sizes of each subclonal population. A more heterogeneous sample would result 
in higher Shannon index, and vice versa. The clonal and subclonal CNA event counts can also be calculated from 
CN profiles (Figure 2a). Clonal CNAs are exhibited in all cells, and therefore assumed to have occurred before 
the Most Recent Common Ancestor (MRCA) in the cell phylogeny. Subclonal CNAs occur after the MRCA and 
are carried only by a subgroup of cells. We define the subclonal CNA count as 

∑

γ
Nγ

N  , in which each CNA γ is 
weighted by Nγ , the number of cells carrying it, against the total cell count N. Finally, we directly compute the 
distances between CINner simulations and DNA-seq data cohorts. For a bulk DNA-seq set containing n samples, 
we produce n simulations. The distance matrix A ∈ R

n×n indicates the precision of the simulation cohort, where 
A(i, j) is the Euclidean distance between CN profiles of simulation i and DNA-seq sample j. The optimal trans-
port  algorithm10,41 then calculates the minimal distance from the simulation cohort to the data cohort, which 
we refer to as the bulk DNA distance (Figure 2b). A similar strategy is used to compute the scDNA distance 
(Figure 2c). Each data sample j can be represented as {cjl } , where cjl is the CN profile of cell l. Similarly, the CN 
profiles from simulation i are defined as {c̄il } . We define the distance matrix Bi,j ∈ R

Ni×Nj , where Bi,j(l1, l2) is the 
Euclidean distance between c̄il1 and cjl2 . The entry A(i, j) in the distance matrix A is then the optimal transport 
distance measured from Bi,j , and a final application of optimal transport on A produces the scDNA-seq distance. 
This approach can be computationally prohibitive, as recent scDNA-seq cohorts contain up to several thousand 
cells. To decrease the runtime, we define Bi,j for each pair of subclones in simulation i and data sample j. The 
value for A(i, j) then results from the optimal transport where the probability distributions for simulation i and 
data sample j are weighted for the subclonal cell counts.

We divide the cell phylogeny statistics into two groups, the “tip statistics” and the “balance statistics” (Fig-
ure 2a). The tip statistics are associated with the leaves in the phylogeny tree. A cherry is defined as two leaves that 
merge directly with each other, and a pitchfork is a group of three leaves merging into one internal node. Cherry 
and pitchfork counts are the normalized numbers of these structures in the entire  tree6. A ladder is defined as a 
sequence of internal nodes where each node has exactly one direct descendant. IL number and average ladder 
are the count of ladders and the average ladder length in the phylogeny tree,  respectively26. In contrast to the 
tip statistics, the balance statistics quantify whether the tree is balanced or imbalanced. Max depth is the height 
of the phylogeny tree when branch lengths are normalized, which is smaller for a more balanced  tree15. Stairs 
measures the proportion of subtrees that are  imbalanced26. Colless is the sum of balance values among all internal 
nodes, where the value for each internal node is the absolute difference between sizes of clades stemming from 
 it26. Both Sackin and Colless indices measure the imbalance extent of trees. In contrast, B2 is a balance index. 

Figure 1.  Overview of the methodology. (a) Schematic of CINner (adapted  from9). Cells follow a birth-death 
process. The probability of division depends on the cell’s fitness, determined based on its copy number profile. 
When cells divide, new clones may arise according to established CNA probabilities. (b) Selection model 
(adapted  from9). A cell’s fitness depends on its copy numbers and chromosome selection parameters. The fitness 
increases after a missegregation if the cell gains a chromosome with selection parameter > 1 , or loses one with 
selection parameter < 1 . (c) Application of Approximate Bayesian Computation (ABC) in parameter inference. 
Parameters are drawn from prior distributions, then statistics are computed from bulk and scDNA-seq samples 
simulated with CINner. ABC-rf then determines the parameter posterior distributions that can be compared 
against true values.
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B2 for tree N is defined as B2(N) = −
∑

ℓ∈L pℓ log2 pℓ , where pℓ is the probability of ending at leaf ℓ conditioned 
on traveling from the root with equal probabilities at each  merge17.

In order to evaluate the effectiveness of each statistic in capturing the signals of CNA rates and selection 
parameters, we compute the statistics from CINner simulations with varying parameters. The chromosome selec-
tion parameters for each simulation are sampled from Uniform(1/1.2, 1.2), and the missegregation probability 
is sampled as log10(pmisseg ) ∼ Uniform(−5,−3) . For each parameter set, we simulate 100 bulk samples and 50 
scDNA samples, then compute the statistics as described above. Afterward, we compute the correlation between 
each parameter and the mean and variance of each statistic from 100,000 simulations. If a statistic strongly cor-
relates with a parameter, it is potentially a good candidate for ABC parameter inference. We note that, as the 
selection parameters only affect the chromosomes that they are assigned to, they have minor impact on genome-
wide statistics. Therefore, the CN statistics (e.g. Shannon diversity index, clonal and subclonal CNA counts, 
and CN distances) are computed based only on chromosome i when compared agaisnt selection parameter si . 
In contrast, CNA rates affect all chromosomes, therefore they are compared against CN statistics computed for 
the entire genome. The other statistics are based on cell phylogeny, which cannot be segregated for individual 
chromosomes. Therefore, the same values are compared with both selection parameters and missegregation 
probability. Finally, the CN distances require direct comparison to the data samples. Therefore, we simulate 100 
bulk samples and 50 scDNA samples to serve as the DNA data, with ground-truth parameters pmisseg = 2× 10−4 
and si ∼ Uniform(1/1.15, 1.15). Because the CN distances measure the proximity between entire cohorts of data 
samples and simulations, they can be used at once without other summary statistics such as mean or variance.

The correlations between the DNA-seq statistics and CINner parameters are presented in Figure 3. All of 
the CN statistics are strong signals for the missegregation probability. As the probability increases, the samples 
become more heterogeneous and contain more aneuploidies both at clonal and subclonal levels, Therefore, the 
Shannon index and missegregation counts are positively correlated with the missegregation probability. Com-
pared to the CN statistics, the correlations between the phylogeny tip statistics and the missegregation probability 
are extremely weak. This indicates that these statistics are more representative of the sample size than of the 
heterogeneity associated with the scale of CNA rates. Specifically, if the subclone count is small compared to the 
sample size, then the cherry count in the phylogeny tree is approximately the sum of cherry counts in distinct 

Figure 2.  Some statistics quantifying the similarity between DNA-seq data and simulations. (a) Statistics 
from CN data and cell phylogeny are grouped into CN statistics (green), phylogeny tip statistics (blue) and 
phylogeny balance statistics (red), depicted on a representative phylogeny tree. (b) Bulk DNA distance is defined 
as the optimal transport cost from simulations to data samples. The distance matrix consists of Euclidean 
distances between each pair of samples. (c) The scDNA distance is similarly based on the optimal transport 
from simulations to data samples. The distance between each pair of samples requires first finding the optimal 
transport between the sampled cells.
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subclones. Because the cells in each subclone are identical, the count only depends on the subclonal population 
size. The same is true for pitchforks and ladders, rendering these statistics ineffective of capturing the heteroge-
neity and selection from genomic data. Finally, the mean phylogeny balance indices correlate strongly with the 
missegregation probability. As the missegregation probability is elevated, there are increasingly more subclones 
with distinct fitness competing to expand, resulting in higher imbalance in the cell phylogeny. Therefore, the 
correlation is negative if the index increases when the trees are more balanced (B2) and positive if the index rises 
for more imbalanced phylogony (Colless and Sackin indices, stairs, and max depth). Moreover, the variance of 
B2 also correlates with the missegregation probability.

In contrast, only CN statistics strongly correlate with the chromosome selection parameters. Nevertheless, 
the correlations are weaker than between CN statistics and missegregation probability. This is because the ane-
uploidy level in each chromosome is significantly lower than in the entire genome. Therefore, the CN statistics 
for specific chromosomes are sparser than the genome-wide equivalences. As selection parameters increase, 
subclonal competition is intensified, and only the cells harboring the most favorable karyotypes can expand, 
resulting in higher missegregation counts both clonally and subclonally. The correlation signs of the CN dis-
tances depend on the individual chromosomes. If a chromosome i has ground-truth selection parameter si ≫ 1 
(e.g., chromosomes 4, 18, 21 and 22, Figure 4a), it is frequently amplified in the observed DNA samples. As the 
selection parameter increases in CINner, the simulated samples also regularly exhibit gains of this chromosome, 
reducing the CN distances, therefore the correlation is negative. On the other hand, if the ground-truth selec-
tion parameter si ≪ 1 (e.g. chromosomes 11, 15 and 19), the observed DNA samples frequently display lower 
copy numbers for chromosome i. If the CINner simulations have higher selection parameters, the increased 
gain counts of chromosome i expand the CN distances and lead to positive correlations. The phylogeny-based 
statistics, including the tip statistics and even the phylogeny balance indices, have no correlation with individual 
selection parameters. This is because the selection parameter of one chromosome has minimal impact on the 
entire cell phylogeny tree. As a result, we expect that the application of these statistics is inefficient in uncovering 
the selection landscape from DNA data.

Figure 3.  Correlations between sample statistics and model parameters. Statistics are categorized into CN 
statistics (green), phylogeny tip statistics (blue) and phylogeny balance statistics (red). Size and color of each 
circle indicate the correlation.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17699  | https://doi.org/10.1038/s41598-024-67842-9

www.nature.com/scientificreports/

ABC‑based parameter inference accurately recovers selection and CNA rates
We construct an ABC-based parameter inference method to recover the missegregation rate and selection param-
eters from a mixture of bulk and scDNA-seq data cohorts. To test the algorithm, we use CINner to create a 
simulated dataset by combining Nbulk = 100 bulk and Nsc = 50 scDNA samples, using ground truth parameters 
as described previously ( pmisseg = 2× 10−4 and si ∼ Uniform(1/1.15, 1.15)). A training set is built from 100,000 
CINner simulations, with prior distributions log10(pmisseg ) ∼ Uniform(−5,−3) and si ∼ Uniform(1/1.2, 1.2). 
Each CINner simulation consists of creating Nbulk + Nsc independent samples with the selected parameters, then 
computing the statistics as described above. Finally, we train ABC-rf39 on the library and use the random forest 

Figure 4.  Parameter inference results with ABC-rf. (a) Prior (light blue) and ABC-rf posterior (dark blue) 
distributions for each parameter, with posterior mean (blue line), mode (red line), median (green line) 
compared against ground truth value (black line). Inference for pmisseg utilizes all genome-wide statistics, 
inference for selection parameters uses only chromosome-specific CN statistics. Simulated data = 100 bulk and 
50 scDNA-seq samples, ABC-rf training set from 100,000 CINner simulations. (b) Correlation between ground 
truth and posterior mean values for all chromosome selection parameters (+/- standard deviation). Root mean 
square error (RMSE) computed for all selection parameters. (c) RMSE of the posterior mean values, depending 
on statistic groups used in inference.
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to infer the posterior distribution for each parameter. To evaluate the quality of the inference, we compute the 
root mean square error (RMSE)55. Let {α1, . . . ,αn} and {β1, . . . ,βn} be the ground truth and inferred values for 
n parameters. The RMSE is then defined as

As described in the previous section, the genome-wide impact of the CNA rates means that their signals are 
contained in all CN and phylogeny-based statistics (with the exception of statistics based on scDNA-seq phy-
logeny tips). In contrast, the local effect of selection parameters renders only CN-based statistics appropriate for 
inference (Figure 3). Therefore, our inference for pmisseg employs all statistics, and the inference for each si uses 
only the CN statistics. The posterior distributions (Figure 4a) of either log10(pmisseg ) or each si exhibit almost 
identical mode, mean and median. Moreover, the posterior peaks are centered close to the ground truth values. 
Specifically, the mode, mean, and median of log10(pmisseg ) are −3.58,−3.6,−3.59 , which are slightly higher but 
close to the ground truth value of log10(2× 10−4) ≈ −3.69 . Similarly, the inferred si ’s are close to the ground 
truth, with the RMSE of posterior means being 0.019 (Figure 4b). The inference tends to be slightly more extreme 
than the true values: if true si > 1 , then inferred s̄i is often greater than si , and vice versa. Combined, these results 
indicate that our inference method, based on ABC and employing appropriate statistics for each parameter class, 
can recover the missegregation rate and the selection landscape driving cancer evolution from DNA-seq data.

We further examine the performance of our inference method when the statistics are chosen differently (Fig-
ure 4c). As expected, for fitting pmisseg , ABC-rf using only CN statistics performs the best, followed by phylogeny 
balance statistics and much higher RMSE when using only phylogeny tips measures. Intriguingly, the inference 
with the combination of phylogeny tips and balance statistics fares even worse than ABC-rf using either group 
individually. One possible explanation is that there are too few signals contained in the balance statistics to offset 
the increased noise introduced by the tip statistics. Note that ABC-rf is relatively insensitive to noisy statistics, 
compared to other ABC-based  methods39. Algorithms such as sequential Monte Carlo (SMC)49 or Markov Chain 
Monte Carlo (MCMC)33, which use a metric to compare statistics between the model and data, would likely 
suffer more from the increased noise level of these measures. Finally, our chosen statistics set, consisting of all 
three groups, results in the lowest RMSE in inferred pmisseg.

Similarly, the inferred selection parameters incur the lowest RMSE when CN statistics are employed, either 
unaccompanied or combined with phylogeny-based statistics. Because the latter is essentially noise, the inference 
using all statistics is similar to only using CN statistics. ABC-rf ’s analysis of variable importance (Figures S1, S2 
and  S3) confirms that the CN statistics and the mean phylogeny balance indices are most important in infer-
ring pmisseg and si’s.

Sensitivity analysis
We showed that our inference method can recover the missegregation probability and selection parameters from 
a cohort of 100 bulk DNA-seq and 50 scDNA-seq samples. However, due to many constraints, the available bulk 
DNA-seq samples for specific cancer types can be of much smaller  sizes21. Additionally, despite recent advances, 
single-cell DNA sequencing remains expensive and technologically challenging, and existing data cohorts rarely 
consist of more than a few  samples18,28,40. Therefore, we examine the impact of the sample sizes on the accuracy 
of the inferred selection landscape. For a given {Nbulk ,Nsc} , we use CINner to simulate Nbulk bulk DNA-seq sam-
ples and Nsc scDNA-seq samples, using similar ground truth parameters as in previous sections. We then infer 
pmisseg and selection parameters si from these samples, and compute the RMSE of the inferred si’s, as well as the 
standard deviation in their posterior distributions. Lower RMSE indicates that the inferred selection parameters 
are accurate, and lower standard deviation implies that there is less uncertainty in the inference.

We first examine the inference accuracy as dependent on the scDNA-seq cohort size. We fix Nbulk = 100 and 
vary Nsc = 5, 10, . . . , 50 . Unsurprisingly, both RMSE and standard deviation decrease as Nsc increases (Figure 5a). 
This is likely because many of the statistics used in our method are based on CN profiles and phylogenies from 
the scDNA cohort. We note that although having very low Nsc incurs higher standard deviation in the selection 

RMSE =

√

√

√

√

1

n

n
∑

i=1

(αi − βi)
2

Figure 5.  Dependence of inference accuracy on sample sizes. RMSE and standard deviation of selection 
parameter posterior means, as a function of scDNA-seq (a) and bulk DNA-seq (b) sample sizes.
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parameters, the RMSE is still acceptable. This is probably because the signals from bulk samples (given that there 
are a sufficient number of them) can compensate for the low scDNA count in capturing the selection landscape, 
albeit with higher uncertainty. The standard deviation decreases as the scDNA sample size increases and plateaus 
at Nsc ≈ 20 , and the RMSE continues decreasing up to Nsc ≈ 40.

Next, we fix Nsc = 50 and vary Nbulk = 10, 20, . . . , 100 . The selection parameter standard deviation decreases 
up to Nbulk ≈ 30 , but the RMSE only decreases slightly (Figure 5b). That the inference method depends less on 
Nbulk than on Nsc could be because there are only a few statistics in our method that are based on bulk DNA-seq 
data, namely the total missegregation counts and the distance between CN profiles in the data cohort and the 
CINner samples (Figure 2b). Another possible interpretation is that for adequately large Nbulk , the bulk DNA 
samples can already capture the chromosome-specific CNA signals required to construct the CN distance. As a 
result of either or both explanations, the RMSE and standard deviation stabilize for Nbulk ≥ 50.

Overall, the performance of our inference method in uncovering the selection landscape reaches its peak for 
data cohorts consisting of as low as 50 bulk DNA-seq and 40 scDNA-seq samples. There already exists data of 
these scales for certain cancer  types20,54. More importantly, the performance is only moderately worse for much 
smaller data cohorts. As both sequencing technologies become more widely available, our method and its insights 
could become instrumental in understanding the selective forces and CNA mechanisms that drive tumorigenesis.

Impact of phylogeny inference accuracy on single‑cell DNA statistics
The scDNA-seq statistics employed in our method are based on CN profiles and cell phylogeny inferred from 
sequencing readcount data. The phylogeny inference is particularly challenging, as the observed CN profiles can 
typically be explained by different evolution  models11. In this section, we investigate the impact of phylogeny 
inference error on scDNA-seq summary statistics.

We create 1,000 CINner simulations, each with log10
(

pmisseg

)

 sampled from Uniform(−5,−3) and chromo-
some selection parameters from Uniform(1/1.15, 1.15) . We then apply MEDICC2 on the simulated single-cell 
CN profiles (Figure 6a). MEDICC2 reconstructs the phylogeny and infers the ancestral genomes from somatic 
CNAs, by computing the minimum-event distance between each pair of cells using a weighted finite-state trans-
ducer  framework23. MEDICC2 produces a phylogeny tree rooted in the diploid genome, with CNAs occurring 
on specific branches such that the tips recover the observed CN profiles in the sample.

We first compare the true phylogeny against the tree inferred by MEDICC2 by using the generalized Robin-
son-Foulds  distance45 (Figure 6b). Unsurprisingly, the MEDICC2 inferred tree becomes more accurate as pmisseg 
increases. This is because MEDICC2 cannot stratify a group of cells if they have the same CN profiles. As pmisseg 
increases, there are more CNAs segregating distinct cells, and the MEDICC2 phylogeny becomes more resolved 
and closer to the ground truth.

We then analyze the summary statistics computed from MEDICC2 phylogeny (Figure 6c). The counts of 
clonal and subclonal missegregations, which require assigning each event on the phylogeny tree, are largely in 
agreement with the true values. As expected, increasing pmisseg results in higher missegregation counts. However, 
the accuracy of MEDICC2 inferences does not depend on the value of pmisseg . This suggests that these statistics 
can reliably indicate the level of aneuploidy observed in the sequencing data, which we have shown to be a strong 
signal for CNA probabilities and selection parameters.

In contrast, the phylogeny tip statistics differ significantly between MEDICC2 and ground truth. These sta-
tistics require accurately segregating individual tips from the remaining of the sample. For instance, locating the 
two tips in a cherry requires at least one CNA that differentiates them from the other cells. A pitchfork likewise 
requires one CNA to distinguish a group of three tips. Similarly, identifying a ladder depends on a sequence of 
tips that are uniquely related to each internal node. Even for high levels of pmisseg , the number of missegregations 
observed in a sample is typically not high enough to separate distinct phylogeny tips, resulting in the discrepency 
between MEDICC2 results and the true values. We note that there is evidence for cell-specific CNAs in recent 
scDNA  data18,28,40. Most of these events are focal amplifications and deletions, and only a few are large events 
such as whole-chromosome or chromosome-arm missegregations. The cell-specific events can help identifying 
single tips in the phylogeny, refining the phylogeny tip statistics. Another potential approach is to utilize unique 
mutations in single cells. Because mutations occur at a much higher frequency than CNAs, they can be used to 
differentiate among distinct cells. However, due to low coverage, it is challenging to reliably detect unique muta-
tions in scDNA-seq data. Future improvements in sequencing technologies and developements of phylogeny 
inference from both CNA and mutational data could increase the accuracy of phylogeny tip statistics.

Finally, we analyze the MEDICC2-based phylogeny balance statistics. Compared to the true values, the bal-
ance indices inferred from MEDICC2 phylogeny are mostly accurate, with the exception of the stairs index. In 
our correlation study, the stairs index has the weakest correlation with pmisseg among balance indices (Figure 3). 
The ABC-rf variable importance analysis also finds it to be a limited indicator for the missegregation probability 
(Figure S1).

In short, we find that all statistics based on CN profiles and most phylogeny balance indices in our study can 
be estimated reliably from MEDICC2, across different values of missegregation probabilities. In previous sec-
tions, we also found that these statistics are valuable in inferring CNA probabilities and selection parameters. 
On the other hand, phylogeny tip statistics cannot be reliably estimated from CN profiles, and do not carry a 
strong signal for the inference problem either.

Conclusion
We have recently introduced  CINner9, a simulation framework that models the impact of CNA probabilities 
and tissue-specific selection coefficients on the observed karyotypes. In this paper, we investigate the problem 
of inferring these parameters, which together shape the aneuploidy patterns in cancers. Accurate parameter 
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inference promises to aid in stratifying patient subtype and predict tumor progression, since heterogeneity has 
been linked to poor patient  outcome1. To solve the nonidentifiability issue in simultaneous inference of both 
CNA rates and selection parameters, we construct an inference method that employs ABC and CINner, which 
takes as input a mixture of bulk and single-cell DNA-sequencing data.

We find that statistics depicting clonal heterogeneity and CNA levels in sample CN profiles, together with 
indices for the degree of balance in scDNA-seq cell phylogenies, are important in estimating CNA probabilities. 
In contrast, only statistics for CN profiles are effective for inferring selection parameters. This is likely due to the 
fact that one chromosome’s selection parameter has negligible impact on the whole sample phylogeny. In both 
cases, there is little signal in the statistics quantifying local features of the phylogeny.

Our algorithm can accurately recover both missegregation probability and chromosome-specific selection 
parameters from DNA-seq data. Peak performance requires at least 50 bulk DNA samples, which already exists 
for many cancer  types20,21. However, most available scDNA studies contain less than the minimum of 20 or 40 
samples necessary to minimize the uncertainty and error in the inference,  respectively18,28,40. Nevertheless, the 
higher errors associated with smaller scDNA-seq cohorts still appear adequately modest, therefore biologically 
meaningful interpretations can still be gained. Furthermore, our numerical experiment with MEDICC2 shows 
that the statistics most important in inferring missegregation probability and the selection forces can be estimated 
accurately from real DNA-seq data.

In this work, we consider only whole-chromosome missegregations in a synthetic test study. However, 
it is straightforward to expand the framework to consider other CNA mechanisms simultaneously, such as 

Figure 6.  Accuracy of phylogeny statistics inferred from MEDICC2. (a) Study schematic. Statistics 
computed from the true phylogeny from each CINner simulation are compared against statistics 
estimated from the MEDICC2-inferred tree. 1,000 simulations are performed for this study, each with 
log10

(

pmisseg

)

∼ Uniform(−5,−3) . (b) Generalized Robinson-Foulds distances between true and MEDICC2 
phylogeny, against corresponding pmisseg . (c) Comparison between statistics computed from true and MEDICC2 
phylogeny. Color of each point denotes pmisseg.
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chromosome-arm missegregations and whole-genome  duplication3,31. In such cases, more detailed copy number 
segmentation and phylogeny reconstruction are necessary to distinguish between different CNA events. The 
approach outlined in this work can be applied to  bulk20,21 and single-cell DNA-sequencing  data18,28,30,35,40 for 
different cancers, toward uncovering tissue-specific selection coefficients and rates of chromosomal instability. 
However, cancer evolution is known to be highly dependent on underlying mutational  processes18. The data 
cohort for inference should therefore be limited to genetically similar samples, such that the selection forces 
driving each tumor can be reasonably assumed to be similar. Furthermore, the sample size should be large 
enough to prevent overfitting. As both bulk and single-cell DNA-sequencing become more readily available, the 
combination of CINner and the inference framework described in this paper provides a promising approach to 
disentangle the effects of heterogeneity and selection that drive specific cancer types.

Data availability
Synthetic data serving as targets for the inference problems are included in the code, available at https:// github. 
com/ dinhn gockh anh/ CINner_ misse grega tion_ infer ence.

Code availability
All code for parameter inference, data analysis and sensitivity studies is available at https:// github. com/ dinhn 
gockh anh/ CINner_ misse grega tion_ infer ence.
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